Prediksi Potensi Koleksi Kebun Raya Purwodadi Sebagai Anti-Coronavirus: Sebuah Kajian Literatur

Elga Renjana, Elok Rifqi Firdiana, Linda Wige Ningrum, Melisnawati H. Angio, Syaiful Rizal

Abstract


Abstrak

SARS-CoV-2 dikenal sebagai agen penyebab COVID-19. Penyakit ini pertama kali muncul di Cina yang dalam beberapa bulan telah menyebar secara masif ke 198 negara lain termasuk Indonesia, dan menyebabkan pandemik global. Sekalipun vaksin telah ditemukan namun laju mutasi virus yang sangat cepat menjadikannya kurang efektif. Beberapa dekade terakhir, para ilmuwan telah mengidentifikasi senyawa-senyawa tumbuhan yang mempunyai potensi sebagai aktivitas anti-coronavirus. Tujuan penelitian ini adalah untuk mengkaji senyawa aktif yang dapat menghambat aktivitas coronavirus dan menentukan koleksi tumbuhan Kebun Raya Purwodadi yang mengandung senyawa tersebut. Penelitian dilakukan melalui review dan kompilasi berbagai literatur terkait. Hasil penelitian menunjukkan bahwa KR Purwodadi memiliki 49 jenis, 38 marga, dan 24 suku koleksi tumbuhan yang diprediksi mengandung 12 jenis senyawa anti-coronavirus, yaitu amentoflavone, beta-sitosterol, betulinic acid, curcumin, emodin, epigallocatechin gallate, eucalyptol, hinokinin, kaempferol, luteolin, myricetin, dan quercetin. Hal ini menunjukkan bahwa tumbuhan memiliki potensi dalam menyediakan bahan obat alami terhadap penyakit di dunia, sehingga kelestariannya perlu untuk terus dijaga. Hasil penelitian ini diharapkan dapat menjadi acuan penelitian selanjutnya dalam mencari tumbuhan yang paling berpotensi sebagai anti-coronavirus.

Abstract

SARS-COV-2 is known as the causing agent of COVID-19. It first appeared in China and in just a few months it spread massively to 198 other countries including Indonesia and caused a global pandemic. Even though the vaccine has been found, the rapid mutation rate of the virus makes it less effective. In the last few decades, scientists have identified the plant compounds as having potential as anti-coronavirus. The purpose of this study was to examine active compounds having the activity of coronavirus inhibition and to determine the living collections of Purwodadi Botanic Garden containing those compounds. The study was conducted through a review and compilation of various related literature. The results showed that Purwodadi BG had 49 species, 38 genera, and 24 families of living collections predicted to contain 12 types of anti-coronavirus compounds, namely amentoflavone, beta-sitosterol, betulinic acid, curcumin, emodin, epigallocatechin gallate, eucalyptol, hinokinin, kaempferol, luteolin, myricetin, and quercetin. It shows that plants are potential to provide natural medicinal ingredients against diseases in the world so their sustainability needs to be maintained. The results of this study are expected to be a reference for further research in finding most potential plants as anti-coronavirus.


Keywords


Anti-coronavirus; COVID-19; Kebun Raya Purwodadi; Tumbuhan obat; Anti-coronavirus; COVID-19; Medicinal Plants; Purwodadi Botanic Garden

Full Text:

PDF

References


Banerjee, A., Kulcsar, K., Misra, V., Frieman, M., & Mossman, K. (2019). Bats and Coronaviruses. Viruses, 11(1), 41.

CDC (Center for Disease Control and Prevention). (2020). Citing computer references. (2020, April 18). Retrieved from https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html.

Chan, J. F.-W., Kok, K.-H., Zhu, Z., Chu, H., To, K. K.-W., Yuas, S., & Yuen, K.-Y. (2020). Genomic characterization of 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections, 9(1), 221–236.

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., et al. (2020a). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 359(10223), 507–513.

Chen, Y., Liu, Q., & Guo, D. (2020b). Emerging coronaviruses: Genome sturcture, replication, and pathogenesis. Journal of Medical Virology, 92(4), 418–423.

FDA (U.S. Food & Drug Administration), (2020). Citing computer references. (2020, April 18). Retrieved from https://www.fda.gov/emergency-preparedness-and-response/mcm-issues/coronavirus-disease-2019-covid-19.

Fung, K. P., Leung, P. C., Tsui, K. W., Wan, C. C. D., Wong, K. B., Waye, M. Y. M., et al. (2011). Immunomodulatory activities of the herbal formula Kwan Du Bu Fei Dang in healthy subjects: a randomised, double-blind, placebo-controlled study. Hong Kong Medical Journal, 17(2), 41–43.

Hsu, C. H., Hwang, K. C., Chao, C. L., Chang, S. G., Ho, M. S., & Chou, P. (2006). Can herbal medicine assist against avian flu? Learning from the experience of using supplementary treatment with Chinese medicine on SARS or SARS-like infectious disease in 2003. Journal of Alternative and Complementary Medicine, 12(6), 505–506.

Hsu, J. T.-A., Kuo, C.-J., Hsieh, H.-P., Wang, Y.-C., Huang, K.-K., Coney, P.-C., et al. (2004). Evaluation of metal-conjugated compounds as inhibitors of 3CL protease of SARS-CoV. FEBS Letters, 574(1-3), 116–120.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223), 497–506.

IUCN (International Union for Conservation of Nature and Natural Resources). (2020). Citing computer references. (2020, April 20). Retrieved https://www.iucnredlist.org.

Jin, Y.-H., Cai, L., Cheng, Z.-S., Cheng, H., Deng, T., Fan, Y.-P., et al. (2020). A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Medical Research, 7, 4.

Jo, S., Kim, H., Kim, S., Shin, D. H., & Kim, M. S. (2019). Characteristics of flavonoids as potent MERS‐CoV 3C‐like protease inhibitors. Chemical Biology & Drug Design, 94(6), 2023–2030.

Jo, S., Kim, S., Shin, D. H., & Kim, M.-S. (2020). Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 145–151.

Jordan, P. C., Stevens, S. K., & Deval, J. (2018). Nucleosides for the treatment of respiratory RNA virus infections. Antiviral Chemistry & Chemotherapy, 26, 2040206618764483.

Kao, R. Y., Tsui, W. H., Lee, T. S., Tanner, J. A., Watt, R. M., Huang, J.-D., et al. (2004). Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics. Chemistry & Biology, 11(9), 1293–1299.

KEMKES (Kementerian Kesehatan). (2020). Citing computer references. (2020, Mei 29). Retrieved from https://www.kemkes.go.id/article/view/20031900002/Dashboard-Data-Kasus-COVID-19-di-Indonesia.html.

Kim, J. Y., Kim, Y. I., Park, S. J., Kim, I. K., Choi, Y.K., & Kim, S. H. (2018). Safe, high-throughput screening of natural compounds of MERS-CoV entry inhibitors using a pseudovirus expressing MERS-CoV spike protein. International Journal of Antimicrobial Agents, 52(5), 730–732.

Li, S.-Y., Chen, C., Zhang, H.-Q., Guo, H.-Y., Wang, H., Wang, L., et al. (2005). Identification of natural compounds with antiviral activities against SARS associated coronavirus. Antiviral Research, 67(1), 18–23.

Lin, C.-W., Tsai, F.-J., Tsai, C.-H., Lai, C.-C., Wan, L., Ho, T.-Y., et al. (2005). Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Research, 68(1), 36–42.

Lin, L.-T., Hsu, W.-C., & Lin, C.-C. (2014). Antiviral natural products and herbal medicines. Journal of Traditional & Complementary Medicine. 4(1), 24–35.

Luo, W., Su, X., Gong, S., et al. (2009). Anti-SARS coronavirus 3C-like protease effects of Rheum palmatum L. extracts. BioScience Trends, 3(4), 124–126.

Nakamura, Y., Asahi, H., Altaf-Ul-Amin, M., Kurokawa, K., & Kanaya, S. (2020). Citing computer references. (2020, Maret 23-25). Retrieved from http://www.knapsackfamily.com/KNApSAcK.

Nguyen, T. T. H., Woo, H.-J., Kang, H.-K., Nguyen, V. D., Kim, Y.-K., Kim, D.-W., et al. (2012). Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnology Letters, 34, 831–838.

Park, J.-Y., Kim, J. H., Kwon, J. M., Kwon. H.-J., Jeong, H. J., Kim, Y. M., et al. (2013). Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorganic & Medicinal Chemistry, 21(13), 3730–3737.

Purwodadi Botanic Garden, (2020). Citing computer references. (2020, Maret 23-35). Retrieved from www.krpurwodadi.lipi.go.id.

Ryu, Y. B., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, J.-Y., Kim, D., et al. 2010. Bifavonoids from Torreya nucifera displaying SARS CoV 3CL (pro) inhibition. Bioorganic & Medicinal Chemistry, 18(22), 7940–7947.

Schoeman, D. & Fielding, B. C. (2019). Coronavirus envelope protein: current knowledge. Virology Journal, 16, 69.

Schwarz, S., Wang, K., Yu, W. J., Sun, B., & Schwarz, W. (2011). Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Research, 90(1), 64–69.

Sharma, A. D. & Kaur, I. (2020). Eucalyptol (1,8 cineole) from Eucalyptus Essential Oil a Potential Inhibitor of COVID 19 Corona Virus Infection by Molecular Docking Studies. Preprints, 1, 2020030455.

Shi, Z., & Wang, F. (2017). Evolution of SARS Coronavirus and the Relevance of Modern Molecular Epidemiology. In Tibayrenc, M. (ed.). Genetics and Evolution of Infectious Disease. 2nd ed. Elsevier.

Wen, C.-C., Kuo, Y.-H., Jan, J.-T, Liang, P.-H., Wang, S.-Y., Liu, H.-G., et al. (2007). Spesific plant terpenoids and lignoids possess potent antiviral activities againts severe acute respiratory syndrome coronavirus. Journal of Medicinal Chemistry, 50(17), 4087–4095.

Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., et al. (2020). Genome composition and divergence of the novel Coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 27(3), 325–328.

WHO (World Health Organization). (2020a). Citing computer references. (2020, Mei 29). Retrieved from https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200211-sitrep-22-ncov.pdf?sfvrsn=fb6d49b1_2.

WHO (World Health Organization). (2020b). Citing computer references. (2020, Mei 29). Retrieved from https://covid19.who.int/,.

WHO (World Health Organization). (2020c). Citing computer references. (2020, Mei 29). Retrieved from https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected.

Xu, X. T,. Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., et al. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Science China Life Science, 63, 457–460.

Yang, Y., Islam, M. S., Wang, J., Li, Y., & Chen, X. (2020). Traditional Chinese Medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A Review and Perspective. International Journal of Biological Sciences, 16(10), 1708–1717.

Yu, M.-S., Lee, J., Lee, J. M., Kim, Y., Chin, Y.-W., Jee, J.-G., et al. (2012). Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorganic & Medicinal Chemistry Letters, 22(12), 4049–4054.

Zhang, D.-H., Wu, K.-L., Zhang, X., Deng, S.-Q., & Peng, B. (2020a). In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. Journal of Integrative Medicine, 18(2), 152–158.

Zhang, N., Wang, L., Deng, X., Liang, R., Su, M., & He, C. (2020b). Recent advances in the detection of respiratory virus infection in humans. Journal of Medical Virology, 92(4), 408–417.

Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270–273.

Zumla, A., Chan, J. F., Azhar, E. I., Hui, D. S., & Yuen, K. Y. (2016). Coronaviruses - drug discovery and therapeutic options. Nature Reviews Drug Discovery, 15(5), 327–347.




DOI: https://doi.org/10.15408/kauniyah.v15i1.16381 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120