Principal Component Analysis and Exploratory Factor Analysis of the Mechanical Waves Conceptual Survey
Abstract
Mechanical waves conceptual survey (MWCS) is a measurement tool established by the physics education research (PER) community to evaluate conceptual physics understanding of mechanical waves. A validation study is still needed to figure out the factor structure of MWCS using two data reduction techniques, namely exploratory factor analysis (EFA) and principal component analysis (PCA). The MWCS dataset in this paper was gathered from physics students (n = 419) from nineteen Ugandan secondary schools. The findings of this research suggested the single factor of the MWCS construct that has emerged from the dataset explored in this study. Several issues involved in the calculation of inter-item correlation within the dataset are suspected as the leading cause of the missing component solution or stable loading in the data. Moreover, there might be other issues that leave open space for future exploration. The findings reported in this paper could be the subject of further discussion in evaluating the validity of the MWCS as a research-based assessment (RBA) to measure students' conceptual understanding of wave mechanics within PER studies.
Keywords
References
Alavi, M., Visentin, D. C., Thapa, D. K., Hunt, G. E., Watson, R., & Cleary, M. (2020). Exploratory factor analysis and principal component analysis in clinical studies: Which one should you use? In Journal of Advanced Nursing. https://doi.org/10.1111/jan.14377
Arrindell, W. A., & van der Ende, J. (1985). An empirical test of the utility of the observations-to-variables ratio in factor and components analysis. Applied Psychological Measurement, 9(2). https://doi.org/10.1177/014662168500900205
Barniol, P., & Zavala, G. (2016). Mechanical waves conceptual survey: Its modification and conversion to a standard multiple-choice test. Physical Review Physics Education Research, 12(1). https://doi.org/10.1103/PhysRevPhysEducRes.12.010107
Bentler, P. M., & Kano, Y. (1990). On the equivalence of factors and components. Multivariate Behavioral Research, 25(1). https://doi.org/10.1207/s15327906mbr2501_8
Bhathal, R., Sharma, M. D., & Mendez, A. (2010). Educational analysis of a first-year engineering physics experiment on standing waves: Based on the ACELL approach. European Journal of Physics, 31(1). https://doi.org/10.1088/0143-0807/31/1/003
Caleon, I., & Subramaniam, R. (2010). Development and application of a three-tier diagnostic test to assess secondary students' understanding of waves. International Journal of Science Education, 32(7). https://doi.org/10.1080/09500690902890130
Ding, L., & Beichner, R. (2009). Approaches to data analysis of multiple-choice questions. Physical Review Special Topics - Physics Education Research, 5(2). https://doi.org/10.1103/PhysRevSTPER.5.020103
Eaton, P., & Willoughby, S. D. (2018). Confirmatory factor analysis applied to the force concept inventory. Physical Review Physics Education Research, 14(1). https://doi.org/10.1103/PhysRevPhysEducRes.14.010124
Eshach, H. (2014). Development of a student-centered instrument to assess middle school students conceptual understanding of sound. Physical Review Special Topics - Physics Education Research, 10(1). https://doi.org/10.1103/PhysRevSTPER.10.010102
Eshach, H., & Schwartz, J. L. (2006). Sound stuff? Naïve materialism in middle-school students’ conceptions of sound. International Journal of Science Education, 28(7). https://doi.org/10.1080/09500690500277938
Falissard, B. (2012). Package 'psy'. Various procedures used in psychometry version. R Package Version 1.1, 20.
Gorsuch, R. L. (2010). Common factor analysis versus component analysis: some well and little known facts. Http://Dx.Doi.Org/10.1207/S15327906mbr2501_3, 25(1), 33–39. https://doi.org/10.1207/S15327906MBR2501_3
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2018). Multivariate data analysis. Pearson. https://doi.org/10.1016/j.ijpharm.2011.02.019
Halloun, I., & Hestenes, D. (2002). Interpreting VASS dimensions and profiles for physics students.
Hansen, J., & Stewart, J. (2021). Multidimensional item response theory and the brief electricity and magnetism assessment. Physical Review Physics Education Research, 17(2), 020139. https://doi.org/10.1103/PHYSREVPHYSEDUCRES.17.020139/FIGURES/3/MEDIUM
Hrepic, Z., Zollman, D. A., & Rebello, N. S. (2010). Identifying students' mental models of sound propagation: The role of conceptual blending in understanding conceptual change. Physical Review Special Topics - Physics Education Research, 6(2). https://doi.org/10.1103/PhysRevSTPER.6.020114
Kanyesigye, S. T., Uwamahoro, J., & Kemeza, I. (2022). Data collected to measure the impact of problem-based learning and document physics classroom practices among Ugandan secondary schools. Data in Brief, 44, 108534. https://doi.org/10.1016/J.DIB.2022.108534
Kassambara, A., of, F. M.-E. and visualize the results, & 2017, undefined. (2016). Package "factoextra." Cran.Microsoft.Com. https://cran.microsoft.com/snapshot/2016-11-30/web/packages/factoextra/factoextra.pdf
Kempf-Leonard, K. (2004). Encyclopedia of social measurement. In Encyclopedia of Social Measurement. https://doi.org/10.5860/choice.42-5629
Kennedy, E., & Laurillard, D. (2019). The potential of MOOCs for large-scale teacher professional development in contexts of mass displacement. London Review of Education, 17(2). https://doi.org/10.18546/LRE.17.2.04
Kline, R. B. (2011). Principles and practice of structural equation modeling, fourth edition - Rex B. Kline - Google Books. 9.
Kontro, I., & Buschhüter, D. (2020). Validity of Colorado learning attitudes about science survey for a high-achieving, Finnish population. Physical Review Physics Education Research, 16(2). https://doi.org/10.1103/PhysRevPhysEducRes.16.020104
Korkmaz, S., Goksuluk, D., & Zararsiz, G. (2014). MVN: An R package for assessing multivariate normality. R Journal, 6(2). https://doi.org/10.32614/rj-2014-031
Kryjevskaia, M., Stetzer, M. R., & Heron, P. R. L. (2011). Student understanding of wave behavior at a boundary: The limiting case of reflection at fixed and free ends. American Journal of Physics, 79(5). https://doi.org/10.1119/1.3560430
Mulaik, S. A. (1990). Blurring the distinctions between component analysis and common factor analysis. Multivariate Behavioral Research, 25(1). https://doi.org/10.1207/s15327906mbr2501_6
Pejuan, A., Bohigas, X., Jaén, X., & Periago, C. (2012). Misconceptions about sound among engineering students. Journal of Science Education and Technology, 21(6). https://doi.org/10.1007/s10956-011-9356-6
Revelle, W., network, M. R.-T. comprehensive R. archive, & 2015, undefined. (2015). Package "psych." Cran.Rstudio.Org. https://cran.rstudio.org/web/packages/psych/psych.pdf
Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A., & Firth, D. (2019). Package 'MASS' (Version 7.3-51.4). Cran-R Project.
Roedel, R. J., El-Ghazaly, S., Rhoads, T. R., & El-Sharawy, E. (1998). Wave concepts inventory - an assessment tool for courses in electromagnetic engineering. Proceedings - Frontiers in Education Conference, 2. https://doi.org/10.1109/FIE.1998.738761
Sawada, D., Piburn, M. D., Judson, E., Turley, J., Falconer, K., Benford, R., & Bloom, I. (2002). Measuring reform practices in science and mathematics classrooms: the reformed teaching observation protocol. School Science and Mathematics, 102(6), 245–253. https://doi.org/10.1111/J.1949-8594.2002.TB17883.X
Schaefer, A. J., Opgen-rhein, R., Zuber, V., Pedro, A., Silva, D., & Strimmer, K. (2012). Package ‘ corpcor .’ Graphical Models.
Schreiber, J. B. (2021). Issues and recommendations for exploratory factor analysis and principal component analysis. Research in Social and Administrative Pharmacy, 17(5), 1004–1011. https://doi.org/10.1016/J.SAPHARM.2020.07.027
Scott, T. F., Schumayer, D., & Gray, A. R. (2012). Exploratory factor analysis of a force concept inventory data set. Physical Review Special Topics - Physics Education Research, 8(2). https://doi.org/10.1103/PhysRevSTPER.8.020105
Semak, M. R., Dietz, R. D., Pearson, R. H., & Willis, C. W. (2017). Examining evolving performance on the Force Concept Inventory using factor analysis. Physical Review Physics Education Research, 13(1). https://doi.org/10.1103/PhysRevPhysEducRes.13.010103
Smith, T. I., Louis, K. J., Ricci, B. J., & Bendjilali, N. (2020). Quantitatively ranking incorrect responses to multiple-choice questions using item response theory. Physical Review Physics Education Research, 16(1). https://doi.org/10.1103/PhysRevPhysEducRes.16.010107
Steiger, J. H. (1979). Factor indeterminacy in the 1930's and the 1970's some interesting parallels. Psychometrika, 44(2). https://doi.org/10.1007/BF02293967
Stewart, J., Zabriskie, C., Devore, S., & Stewart, G. (2018). Multidimensional item response theory and the Force Concept Inventory. Physical Review Physics Education Research, 14(1). https://doi.org/10.1103/PhysRevPhysEducRes.14.010137
Tongchai, A., Sharma, M. D., Johnston, I. D., Arayathanitkul, K., & Soankwan, C. (2009). Developing, evaluating and demonstrating the use of a conceptual survey in mechanical waves. International Journal of Science Education, 31(18). https://doi.org/10.1080/09500690802389605
Velicer, W. F., & Jackson, D. N. (1990a). Component analysis versus common factor analysis: some further observations. Multivariate Behavioral Research, 25(1). https://doi.org/10.1207/s15327906mbr2501_12
Velicer, W. F., & Jackson, D. N. (1990b). Component analysis versus common factor analysis: some issues in selecting an appropriate procedure. Multivariate Behavioral Research, 25(1). https://doi.org/10.1207/s15327906mbr2501_1
Velicer, W. F., Peacock, A. C., & Jackson, D. N. (1982). A comparison of component and factor patterns: A monte carlo approach. Multivariate Behavioral Research, 17(3). https://doi.org/10.1207/s15327906mbr1703_5
Wells, J., Henderson, R., Traxler, A., Miller, P., & Stewart, J. (2020). Exploring the structure of misconceptions in the force and motion conceptual evaluation with modified module analysis. Physical Review Physics Education Research, 16(1). https://doi.org/10.1103/PHYSREVPHYSEDUCRES.16.010121
Wickham, H. (2017). ggplot2 - Elegant graphics for data analysis (2nd Edition). In Journal of Statistical Software (Vol. 77, Issue Book Review 2).
Wickham, H., Bryan, J., Kalicinski, M., & Valery, K. (2019). Package "readxl." https://cran.microsoft.com/snapshot/2019-03-09/web/packages/readxl/readxl.pdf
Wittmann, M. C. (1998). Making sense of how students come to an understanding of physics: An example from mechanical waves. Physics.
Wittmann, M. C. (2002). The object coordination class applied to wave pulses: analyzing student reasoning in wave physics. Http://Dx.Doi.Org/10.1080/09500690110066944, 24(1), 97–118. https://doi.org/10.1080/09500690110066944
Wittmann, M. C., Steinberg, R. N., & Redish, E. F. (1999). Making sense of how students make sense of mechanical waves. The Physics Teacher, 37(1). https://doi.org/10.1119/1.880142
Wittmann, M. C., Steinberg, R. N., & Redish, E. F. (2003). Understanding and affecting student reasoning about sound waves. International Journal of Science Education, 25(8). https://doi.org/10.1080/09500690305024
Yanai, H., & Ichikawa, M. (2006). Factor analysis. Handbook of Statistics, 26, 257–296. https://doi.org/10.1016/S0169-7161(06)26009-7
Zeng, L., Smith, C., Poelzer, G. H., Rodriguez, J., Corpuz, E., & Yanev, G. (2014). Illustrations and supporting texts for sound standing waves of air columns in pipes in introductory physics textbooks. Physical Review Special Topics - Physics Education Research, 10(2). https://doi.org/10.1103/PhysRevSTPER.10.020110
DOI: 10.15408/jp3i.v11i2.27488
Refbacks
Copyright (c) 2022 Purwoko Haryadi Santoso, Edi Istiyono, Haryanto Haryanto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.