Bayesian Statistics in Psychological Research

Edwin Adrianta Surijah, I Made Feby Anggara

Abstract


One of the key developments in psychological data analysis is the Bayesian implementation. This article aims to introduce Bayesian statistics application in psychological research. A data set of Marital Satisfaction and Positive Affect (n = 200) became an example to compare the regression results based on frequentist and Bayesian statistics. The data analysis examined the influence of positive affect on marital satisfaction. Based upon the prior information and observed data, results suggest that the average of the distribution of the posterior coefficient of positive affect is .31, with a deviation standard of .01 and a credible interval ranging from .30 to .33. The study’s results present the unique approach in interpreting the Bayesian result. This article also outlines diagnostic steps to obtain a robust Bayesian result and avoid misuse of Bayesian statistics. Finally, discussions cover the probability principle in Bayesian analysis and how to interpret its result to encourage Indonesian psychological scientists to implement Bayesian as an alternative to data analysis.

Keywords


Bayesian; probability; regression; statistics

References


Abdelkader, M. (2020, April 25). Bayesian linear regression. Retrieved March 4, 2021, from https://modelingwithr.rbind.io/bayes/Bayesian-linear-regression/

Altman, N., & Krzywinski, M. (2017). Interpreting P values. Nature Methods, 14, 213-214. https://doi.org/10.1038/nmeth.4210

Andrews, M., & Baguley, T. (2013). Prior approval: the growth of Bayesian methods in psychology. British Journal of Mathematical and Statistical Psychology, 66(1), 1-7. https://doi.org/10.1111/bmsp.12004

Az Zahra, S., & Caninsti, R. (2017). Hubungan antara kepuasaan pernikahan dengan spiritualitas pada istri bekerja yang berada dalam tahap pernikahan Families With School Children. Jurnal Psikogenesis, 4(2), 215-223. https://doi.org/10.24854/jps.v4i2.351

Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. B. (2000). Guidelines for the process of cross-cultural adaptation of self-report measures. SPINE, 25(24), 3186-3191. https://doi.org/10.1097/00007632-200012150-00014

Becker, C., Kirchmaier, I., & Trautmann, S. T. (2019). Marriage, parenthood and social network: Subjective well-being and mental health in old age. PLOS ONE, 14(7), e0218704. https://doi.org/10.1371/journal.pone.0218704

Bolstad, W. M., & Curran, J. M. (2017). Introductions to Bayesian statistics (3rd ed.). Hoboken, New Jersey: John Wiley & Sons, Inc. https://doi.org/10.1002/9781118593165

Buaton, R., & Astuti, S. (2014). Perancangan sistem pakar tes kepribadian dengan menggunakan metode Bayes. METHODA, 4(1), 1-16.

Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80, 1-28.

Chen, M., & Shao, Q. (1999). Monte Carlo estimation of Bayesian credible and HPD intervals. Journal of Computation and Graphical Statistics, 8(1), 69-92. https://doi.org/10.2307/1390921

Demšar, J., Repovš, G., & Štrumbelj, E. (2020). bayes4psy—An open source R package for Bayesian statistics in psychology. Frontiers in Psychology, 11, 947. https://doi.org/10.3389/fpsyg.2020.00947

Depaoli, S., Clifton, J. P., & Cobb, P. R. (2016). Just Another Gibbs Sampler (JAGS): Flexible software for MCMC implementation. Journal of Educational and Behavioral Statistics, 41(6), 628-649. https://doi.org/10.3102/1076998616664876

Diener, E., Emmons, R. A., Larsen, R. J., & Griffin, S. (1985). The Satisfaction With Life Scale. Journal of Personality Assessments, 49(1), 71-75.

Dienes, Z. (2011). Bayesian versus orthodox statistics: Which side are you on? Perspectives on Psychological Science, 6, 274-290.

Ekström, R. J., Lunn, D., Jackson, C., Best, N., & Thomas, A. (2013). The BUGS Book: A practical introduction to Bayesian analysis. New York: CRC Press.

Etz, A., & Vandekerckhove, J. (2018). Introduction to Bayesian inference for psychology. Psychonomic Bulletin and Review, 25, 5-34. https://doi.org/10.3758/s13423-017-1262-3

Gabry, J., & Modrák, M. (2021, January 11). Visual MCMC diagnostics using the bayesplot package. Retrieved March 4, 2021, from https://mc-stan.org/bayesplot/articles/visual-mcmc-diagnostics.html

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-472.

Gelman, A., Lee, D., & Guo, J. (2015). Stan: A probabilistic programming language for Bayesian inference and optimization. Journal of Educational and Behavioral Statistics, 40(5), 530-543. https://doi.org/10.3102/1076998615606113

Head, M. L., Holman, L., Lanfear, R., Kahn, A. T., & Jennions, M. D. (2015). The extent and consequences of p-hacking in science. PLoS Biology, 13(3), e1002106. https://doi.org/10.1371/journal.pbio.1002106

Johnson, H. A., Zabriskie, R. B., & Hill, B. (2006). The contributions of couple leisure involvement, leisure time, and leisure satisfaction to marital satisfaction. Marriage & Family Review, 40(1), 69-91. https://doi.org/10.1300/J002v40n01_05

Johnson, M. D., Cohan, C. L., Davila, J., Lawrence, E., Rogge, R. D., Karney, B. R., . . . Bradbury, T. N. (2005). Problem-solving skills and affective expressions as predictors of change in marital satisfaction. Journal of Consulting and Clinical Psychology, 73(1), 15-27. https://doi.org/10.1037/0022-006X.73.1.15

Kim, A., Lee, J. A., & Park, H. S. (2018). Health behaviors and illness according to marital status in middle-aged Koreans. Journal of Public Health, 40(2), e99-e106. https://doi.org/10.1093/pubmed/fdx071

Krawczyk, M. (2015). The search for significance: A few peculiarities in the distribution of p values in experimental psychology literature. PLoS ONE, e0127872. https://doi.org/10.1371/journal.pone.0127872

Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. New York, NY: Academic Press.

Law, J. (2019, June 14). Bayesian statistics and functional programming: Bayesian linear regression with Gibbs sampling in R. Retrieved March 4, 2021, from https://jonnylaw.rocks/posts/2019-06-14-Bayesian-linear-regression/

Lunn, D., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS — a Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing, 10, 325-337.

Makowski, D., Ben-Shachar, M. S., & Lüdecke, D. (2019). bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. Journal of Open Source Software, 4(40), 1541. https://doi.org/10.21105/joss.01541

Marsman, M., & Wagenmakers, E.-J. (2017). Bayesian benefits with JASP. European Journal of Developmental Psychology, 14(5), 545-555. https://doi.org/10.1080/17405629.2016.1259614

Nurmansyah, W., & Hartati, S. (2013). Prototipe sistem pakar penentu jenis gangguan psikologi klinis menggunakan Forward Chaining dan Formula Bayes. Berkala MIPA, 23(2), 149-160.

Otero, M. C., Wells, J. L., Chen, K.-H., Brown, C. L., Connelly, D. E., Levenson, R. W., & Fredrickson, B. L. (2020). Behavioral indices of positivity resonance associated with long-term marital satisfaction. Emotion, 20(7), 1225-1233. https://doi.org/10.1037/emo0000634

Penny, W. D., Mattout, J., & Trujillo-Barreto, N. (2007). CHAPTER 35-Bayesian model selection and averaging. In K. Friston, J. Ashburner, S. Kiebel, T. Nichols, & W. Penny (Eds.). Academic Press. https://doi.org/10.1016/B978-012372560-8/50035-8

Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence Diagnosis and Output Analysis for MCMC. R News, 6(1), 7-11.

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225-237. https://doi.org/10.3758/PBR.16.2.225

Sorokowski, P., Randall, A., Groyecka, A., Frackowiak, T., Cantarero, K., Hilpert, P., . . . Sorokowska, A. (2017). Marital satisfaction, sex, age, marriage duration, religion, number of children, economic status, education, and collectivistic values: Data from 33 countries. Frontiers in Psychology, 8, 1199. https://doi.org/10.3389/fpsyg.2017.01199

St. John, P. C., Strutz, J., Broadbelt, L. J., Tyo, K. E., & Bomble, Y. J. (2019). Bayesian inference of metabolic kinetics from genome-scale multiomics data. PLOS Computational Biology, 15(11), e1007424. https://doi.org/10.1371/journal.pcbi.1007424

Sturtz, S., Ligges, U., & Gelman, A. (2005). R2WinBUGS: A package for running WinBUGS from R. Journal of Statistical Software, 12(3), 1-16.

Surijah, E. A., & Prakasa, D. Y. (2020). Kepuasan pernikahan dan bias harapan sosial. Jurnal Ilmiah Psikologi MIND SET, 11(01), 14-25. https://doi.org/10.35814/mindset.v11i01.1269

Van de Schoot, R. (2015). Latent trajectory studies: The basics, how to interpret the results, and what to report. European Journal of Psychotraumatology, 6, 27514. http://dx.doi.org/10.3402/ejpt.v6.27514

van de Schoot, R. D., Kramer, B., Märtens, K., Tadesse, M. G., Vannucci, M., Gelman, A., . . . Yau, C. (2021). Bayesian statistics and modelling. Nature Reviews Methods Primers, 1, 1. https://doi.org/10.1038/s43586-020-00001-2

van de Schoot, R., & Miočević, M. (Eds.). (2020). Small sample size solutions: A guide for applied researchers and practitioners (1 ed.). Routledge. https://doi.org/10.4324/9780429273872

van de Schoot, R., Winter, S. D., Ryan, O., Zondervan-Zwijnenburg, M., & Depaoli, S. (2017). A systematic review of Bayesian articles in psychology: The last 25 years. Psychological Methods, 22(2), 217-239. http://dx.doi.org/10.1037/met0000100

van Ravenzwaaij, D., Cassey, P., & Brown, S. (2018). A simple introduction to Markov Chain Monte–Carlo sampling. Psychonomic Bulletin and Review, 25, 143-154. https://doi.org/10.3758/s13423-016-1015-8

Wagenmakers, E. J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., . . . Morey, R. D. (2018). Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychonomic Bulletin & Review, 25, 35-57. https://doi.org/10.3758/s13423-017-1343-3

Watson, D., Clark, L. A., & Carey, G. (1988). Positive and negative affectivity and their relation to anxiety and depressive disorders. Journal of Abnormal Psychology, 97(3), 346-353. https://doi.org/10.1037/0021-843X.97.3.346

Yau, C. (n.d.). Bayesian inference using OpenBUGS. Retrieved March 4, 2021, from R Tutorial: http://www.r-tutor.com/Bayesian-statistics/openbugs

Zevon, M. A., & Tellegen, A. (1982). The structure of mood change: An idiographic/nomothetic analysis. Journal of Personality and Social Psychology, 43, 111-122.


Full Text: PDF

DOI: 10.15408/jp3i.v10i2.20185

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Edwin Adrianta Surijah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.