A Study on Sentiment Analysis of Public Response to The New Fuel Price Policy In 2022: A Support Vector Machine Approach
Abstract
The Indonesian government's decision to raise fuel prices in 2022, following a global surge in crude oil prices, triggered widespread public debate. Understanding public sentiment toward such policy decisions is essential for determining the appropriate timing of implementation while minimizing negative reactions. This study aims to classify public sentiment regarding the fuel price hike using the Support Vector Machine (SVM) algorithm. Data were collected from Twitter through web scraping using the SNScrape library in Python. A total of 3,000 tweets were gathered and underwent preprocessing steps such as case folding, tokenization, stopword removal, and stemming. The classification model was built in Google Colab using the SVM algorithm to categorize tweets as positive (+) or negative (–). Model performance was evaluated using a confusion matrix, achieving an accuracy of 81.0%. The results showed that 63.6% of public responses were negative, while 36.4% were positive. Additionally, it was observed that the accuracy converged to 81.1% as the number of training iterations increased. The findings were presented through word clouds and pie charts to enhance interpretability, and a simple graphical user interface (GUI) was developed for user interaction. The study indicates that the government’s repeated delays in implementing the price adjustment may have reflected sensitivity to public sentiment. This research demonstrates the potential of sentiment classification as a tool for evidence-based policymaking, offering insights into the social dynamics surrounding policy changes. Future research could expand by incorporating multi-class sentiment categories or real-time data for dynamic policy evaluation.
Keywords: Fuel price; Public opinion; Sentiment analysis; Social media; SVM.
Abstrak
Keputusan pemerintah Indonesia untuk menaikkan harga bahan bakar minyak pada tahun 2022 dan disusul oleh lonjakan harga minyak mentah global, memicu perdebatan publik yang meluas. Memahami sentimen publik terhadap keputusan kebijakan tersebut sangat penting untuk menentukan waktu implementasi yang tepat untuk meminimalkan reaksi negatif. Penelitian ini bertujuan untuk mengklasifikasikan sentimen publik terhadap kenaikan harga bahan bakar minyak menggunakan algoritma Support Vector Machine (SVM). Data dikumpulkan dari Twitter melalui web scraping menggunakan pustaka SNScrape dalam bahasa Python. Sebanyak 3.000 tweet dikumpulkan dan dilakukan tahap praproses seperti case folding, tokenization, stopword removal, dan stemming. Model klasifikasi dibangun di Google Colab menggunakan algoritma SVM untuk mengkategorikan tweet sebagai positif (+) atau negatif (–). Kinerja model dievaluasi menggunakan matriks confusion dan mencapai akurasi 81,0%. Hasil penelitian menunjukkan bahwa 63,6% tanggapan publik bersifat negatif, sedangkan 36,4% bersifat positif. Selain itu, akurasi konvergen menjadi 81,1% seiring dengan peningkatan jumlah iterasi pelatihan. Temuan tersebut disajikan melalui word cloud dan diagram pai untuk meningkatkan interpretabilitas, dan graphical user interface (GUI) sederhana dikembangkan untuk interaksi pengguna. Studi ini menunjukkan bahwa penundaan berulang pemerintah dalam menerapkan penyesuaian harga mungkin mencerminkan kepekaan terhadap sentimen publik. Penelitian ini menunjukkan potensi klasifikasi sentimen sebagai alat untuk pembuatan kebijakan berbasis bukti, yang menawarkan wawasan tentang dinamika sosial seputar perubahan kebijakan. Penelitian di masa mendatang dapat diperluas dengan menggabungkan kategori sentimen multikelas atau data waktu nyata untuk evaluasi kebijakan yang dinamis.
Kata Kunci: Bahan bakar; Opini public; Analisis sentiment; Mesia social; SVM.
2020MSC: 62H30, 91D30.
Keywords
References
R. E. Husna, R. Wasono, and M. A. Haris, “Analisis Sentimen pada Twitter Mengenai Netflix Diblokir Telkom Menggunakan Support Vector Machine,” in Prosiding Seminar Nasional VARIANSI, 2020.
S. Koda, A. Zeggada, F. Melgani, and R. Nishii, “Spatial and Structured SVM for Multilabel Image Classification,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 10, pp. 5948–5960, 2018, doi: 10.1109/TGRS.2018.2828862.
A. Mishra, ; Sushree, S. Dash, and ; Swati Tiwari, “Unlocking the Magic of Facial Recognition: Empowering Security and Emotions With Svm,” J. Data Acquis. Process., vol. 38, no. 2, p. 2402, 2023, doi: 10.5281/zenodo.776955.
Y. Liang et al., “Study on the Prediction of Low-Index Coal and Gas Outburst Based on PSO-SVM,” Energies, vol. 16, no. 16, 2023, doi: 10.3390/en16165990.
Y. Lin, “Research on HOG-SVM pedestrian detection method based on FPGA,” Appl. Comput. Eng., vol. 9, no. 1, pp. 272–281, 2023, doi: 10.54254/2755-2721/9/20230110.
U. Kurniasih and A. T. Suseno, “Analisis Sentimen Terhadap Bantuan Subsidi Upah (BSU) pada Kenaikan Harga Bahan Bakar Minyak (BBM),” J. Media Inform. Budidarma, vol. 6, no. 4, p. 2335, 2022, doi: 10.30865/mib.v6i4.4958.
I. Nurhidayat and B. Pimpunchat, “A Comparative Approach to SVM Kernel Functions via Accurate Evaluating Algorithms,” J. Eng. Sci. Technol., vol. 18, no. 4, pp. 2078–2090, 2023.
R. Pandey, S. K. Khatri, N. K. Singh, and P. Verma, Eds., Artificial intelligence and machine learning for EDGE computing. Academic Press, 2022.
M. Sinambela, M. Situmorang, K. Tarigan, S. Humaidi, and M. Sirait, “Waveforms Classification of Northern Sumatera Earthquakes for New Mini Region Stations Using Support Vector Machine,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 11, no. 2, pp. 489–494, 2021, doi: 10.18517/ijaseit.11.2.12503.
C. Yan, “Stock Price Prediction of Walmart Based on Combination of SVM and LS-SVM Models,” BCP Bus. Manag., vol. 38, pp. 363–371, 2023, doi: 10.54691/bcpbm.v38i.3716.
L. Shao and Y. Gao, “A Gas Prominence Prediction Model Based on Entropy-Weighted Gray Correlation and MCMC-ISSA-SVM,” Processes, vol. 11, no. 7, 2023, doi: 10.3390/pr11072098.
J. Serin, K. T. Vidhya, I. S. Mary Ivy Deepa, V. Ebenezer, and A. Jenefa, “Gender Classification from Fingerprint Using Hybrid CNN-SVM,” J. Artif. Intell. Technol., vol. 4, no. 1, pp. 82–87, 2024, doi: 10.37965/jait.2023.0192.
S. Acharya, T. Kar, U. C. Samal, and P. K. Patra, “Performance Comparison between SVM and LS-SVM for Rice Leaf Disease detection,” EAI Endorsed Trans. Scalable Inf. Syst., vol. 10, no. 6, pp. 1–7, 2023, doi: 10.4108/eetsis.3940.
A. S. Abdelfattah, “SVM transformations for Multi-labeled Topics,” Proc. ACM RACS, vol. 1, no. December 2022, 2022, doi: 10.36227/techrxiv.21671915.
V. Kaushik and M. Kumar, “Water surface profile prediction in non-prismatic compound channel using support vector machine (SVM),” AI Civ. Eng., vol. 2, no. 1, pp. 1–12, 2023, doi: 10.1007/s43503-023-00015-1.
T. Fan, H. Wang, P. Wu, C. Ling, and M. T. Ahvanooey, “Multimodal sentiment analysis for social media contents during public emergencies,” J. Data Inf. Sci., pp. 1–27, 2023, doi: 10.2478/jdis-2023-0012.
N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 150–155, 2021.
R. Wati and S. Ernawati, “Analisis Sentimen Persepsi Publik Mengenai PPKM Pada Twitter Berbasis SVM Menggunakan Python,” J. Tek. Inform. UNIKA St. Thomas, vol. 06, pp. 240–247, 2021, doi: 10.54367/jtiust.v6i2.1465.
H. Hu, K. Li, W. Liang, Q. Li, and Z. Xie, “Kilometer Sign Positioning-Aided INS/Odometer Integration for Land Vehicle Autonomous Navigation,” IEEE Sens. J., vol. 23, no. 4, pp. 4143–4158, 2023, doi: 10.1109/JSEN.2023.3236063.
D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 1–11, 2020, doi: 10.21107/edutic.v7i1.8779.
F. S. Pamungkas and I. Kharisudin, “Analisis Sentimen dengan SVM, NAIVE BAYES dan KNN untuk Studi Tanggapan Masyarakat Indonesia Terhadap Pandemi Covid-19 pada Media Sosial Twitter,” Pros. Semin. Nas. Mat., vol. 4, pp. 1–7, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/prisma/article/view/45038
F. S. Jumeilah, “Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 1, pp. 19–25, 2017, doi: 10.29207/resti.v1i1.11.
A. M. Pravina, I. Cholissodin, and P. P. Adikara, “Analisis Sentimen Tentang Opini Maskapai Penerbangan pada Dokumen Twitter Menggunakan Algoritme Support Vector Machine (SVM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2789–2797, 2019, doi: 10.1061/9780784415313.ch06.
L. Q. Zalyhaty, “Analisis Sentimen Tanggapan Masyarakat Terhadap Vaksin Covid-19 menggunakan Algoritma Support Vector Machine (SVM),” Universitas Dinamika, 2021.
A. Julian and R. Devipriya, “Exploring Hyperparameter Tuning Strategies for Optimizing Model Performance,” in 2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies, 2024, pp. 1–4. doi: 10.1109/TQCEBT59414.2024.10545054.
J. A Ilemobayo et al., “Hyperparameter Tuning in Machine Learning: A Comprehensive Review,” J. Eng. Res. Reports, vol. 26, no. 6, pp. 388–395, 2024, doi: 10.9734/jerr/2024/v26i61188.
DOI: 10.15408/inprime.v7i1.42717
Refbacks
- There are currently no refbacks.