The Total Irregularity Strength of a Comb Product of Stars
Abstract
A totally irregular total k-labeling λ: V U E → {1, 2, ⋯ , k} of a graph G is a labeling where the weights of all distinct vertices and edges are unique. The weight w(x) of a vertex x is defined as the sum of its label and the labels of all edges incident to it, while the weight w(e) of an edge e is the sum of its label and the labels of its two endpoints. The minimum k for which G admits such a labeling is known as the total irregularity strength of G, denoted ts(G). This study focuses on determining ts(G) for specific classes of trees, including the comb product of stars, where the contact vertex is the central vertex of one star, and the triple star graph.
Keywords: comb product; star; total irregularity strength; totally irregular total labeling graph.
Abstrak
Pelabelan k-total tak teratur total λ: V U E → {1, 2, ⋯ , k} dari suatu graf G adalah suatu pelabelan sedemikian sehingga bobot setiap titik dan sisi masing-masing berbeda. Bobot suatu titik w(x) adalah jumlah label titik x dan label setiap sisi yang terkait ke x, dan bobot suatu sisi w(e) adalah jumlah label sisi e dan kedua titik yang terkait ke e. Nilai minimum k sehingga suatu graf G memiliki pelabelan tersesebut dikenal sebagai nilai ketakteraturan total dari G, dinotasikan dengan ts(G). Pada artikel ini, ditentukan nilai ketakteraturan total dari suatu kelas graf pohon, yaitu hasil operasi comb dari graf bintang, dimana titik tetapnya adalah titik pusat graf bintang, dan graf bintang tripel.
Kata Kunci: hasil operasi comb; graf bintang, nilai ketakteraturan total; pelabelan total tak teratur total.
2020MSC: 05C78
Keywords
References
J. A. Galian, "A dynamic survey of graph labeling," Electron. J. Combin., vol. 25, no. DS6, 2022.
M. Bača, S. Jendrol', M. Miller, and J. Ryan, "On irregular total labelings," Discrete Math., vol. 307, pp. 1378–1388, 2007.
J. Ivanco and S. Jendrol, "Total edge irregularity strength of trees," Discuss. Math. Graph Theory, vol. 26, pp. 449–456, 2006.
Nurdin, E. T. Baskoro, A. N. M. Salman, and N. N. Gaos, "On the total vertex irregularity strength of trees," Discrete Math., vol. 310, pp. 3043–3048, 2010.
C. C. Marzuki, A. N. M. Salman, and M. Miller, "On the total irregularity strengths of cycles and paths," Far East J. Math. Sci., vol. 82, no. 1, pp. 1–21, 2013.
M. I. Tilukay, A. N. M. Salman, and E. R. Persulessy, "On the total irregularity strength of fan, wheel, triangular book, and friendship graphs," Procedia Comput. Sci., vol. 74, pp. 124–131, 2015.
M. I. Tilukay, B. P. Tomasouw, F. Y. Rumlawang, and A. N. M. Salman, "The total irregularity strength of complete and complete bipartite graphs," Far East J. Math. Sci., vol. 102, no. 2, pp. 317–327, 2017.
M. I. Tilukay, P. D. M. Taihuttu, A. N. M. Salman, F. Y. Rumlawang, and Z. A. Leleury, "Complete bipartite graph is a totally irregular total graph," Electron. J. Graph Theory Appl., vol. 9, no. 2, pp. 387–396, 2021.
M. I. Tilukay, "On the total irregularity strength of the corona product of a path with a path," Tensor: Pure Appl. Math. J., vol. 4, no. 1, pp. 21–26, 2023.
R. Ramdani and A. N. M. Salman, "On the total irregularity strength of some cartesian product graphs," AKCE Int. J. Graphs Comb., vol. 10, pp. 199–209, 2010.
R. Ramdani, A. N. M. Salman, and H. Assiyatun, "On the total irregularity strength of regular graphs," J. Math. Fund. Sci., vol. 47, no. 3, pp. 281–295, 2015.
R. Ramdani, A. N. M. Salman, H. Assiyatun, A. Semaničová-Fenovčiková, and M. Bača, "Total irregularity strength of three families of graphs," Math. Comput. Sci., vol. 9, pp. 229–237, 2015.
C. C. Marzuki, F. N. Gianita, R. Fitri, Abdussakir, and F. Aryani, "On the total irregularity strength of m-copy cycles and m-copy paths," Res. J. Appl. Sci., vol. 13, no. 10, pp. 582–586, 2018.
D. Indriati, Widodo, I. E. Wijayanti, and K. A. Sugeng, "On the total irregularity strength of double-star and related graphs," Procedia Comput. Sci., vol. 74, pp. 118–123, 2015.
D. Indriati, Widodo, I. E. Wijayanti, K. A. Sugeng, and I. Rosyida, "Totally irregular total labeling of some caterpillar graphs," Electron. J. Graph Theory Appl., vol. 8, no. 2, pp. 247–254, 2020.
I. Rosyida, Widodo, and D. Indriati, "On total irregular strength of caterpillars with two leaves on each internal vertex," IOP Conf. Ser.: J. Phys. Conf. Ser., vol. 1008, p. 012046, 2018.
I. Rosyida, Mulyono, and D. Indriati, "On totally irregular total labeling of caterpillars having even number of internal vertices with degree three," AIP Conf. Proc., vol. 2326, p. 020024, 2021.
DOI: 10.15408/inprime.v6i2.42188
Refbacks
- There are currently no refbacks.