Integrating Spatial Autoregressive Exogenous with Ordinary Kriging for Improved Rainfall Prediction in Java: Enhancing Accuracy with Climate Variables and Spatial Autocorrelation
Abstract
Indonesia is a tropical country with high rainfall influenced by its archipelagic geography and phenomena like El Niño and La Niña. According to the Meteorology, Climatology, and Geophysics Agency (BMKG), La Niña can increase Indonesia's monthly rainfall by 20-40% above normal. Despite numerous existing spatial interpolation methods, there remains a significant research gap in accurately predicting rainfall at unsampled locations, specifically when considering both spatial autocorrelation and multiple climate variables simultaneously. This research proposes Spatial Autoregressive Exogenous Kriging (SAR-X Kriging), a novel hybrid approach that integrates the SAR-X model with Ordinary Kriging to enhance rainfall prediction accuracy. Unlike conventional methods, SAR-X Kriging explicitly captures both spatial dependence and the influence of external climate factors, improving predictive performance. SAR-X Kriging first models spatial dependencies between locations and incorporates exogenous climate variables (surface pressure, air temperature, humidity, wind speed, and solar radiation) to enhance prediction accuracy. It also applies kriging for spatial interpolation. This method was chosen for its robustness in capturing spatial dependence and external influences. The analysis revealed significant spatial dependence across districts/cities in Java Island based on the Moran's Index test. The best SAR-X model, utilizing air temperature and wind speed as exogenous variables, achieved a p-value of 6.0352 × 10-9. Predictions using SAR-X Kriging yielded the lowest Mean Absolute Percentage Error (MAPE) of 3.82%, outperforming the standalone SAR-X method MAPE 4.68% and the Ordinary Kriging method MAPE 3.86%. Practically, these results provide reliable rainfall predictions, enabling better climate-informed decision-making in water resource management, agricultural planning, and flood prevention strategies in Java.
Keywords: climate; rainfall; MAPE; SAR-X; SAR-X Kriging.
Abstrak
Indonesia merupakan negara tropis dengan curah hujan tinggi yang dipengaruhi oleh kondisi geografis kepulauan serta fenomena alam seperti El Niño dan La Niña. Menurut Badan Meteorologi, Klimatologi, dan Geofisika (BMKG), La Niña mampu meningkatkan curah hujan bulanan Indonesia hingga 20-40% di atas normal. Meskipun terdapat berbagai metode interpolasi spasial yang telah dikembangkan, masih terdapat kesenjangan penelitian dalam menghasilkan prediksi curah hujan secara akurat di lokasi yang tidak tersampel, terutama ketika mempertimbangkan secara bersamaan ketergantungan spasial serta pengaruh dari berbagai variabel iklim. Penelitian ini mengusulkan metode bernama Spatial Autoregressive Exogenous Kriging (SAR-X Kriging), sebuah pendekatan hybrid baru yang mengintegrasikan model SAR-X dengan metode Ordinary Kriging untuk meningkatkan akurasi prediksi curah hujan. Tidak seperti metode konvensional, SAR-X Kriging secara eksplisit menangkap ketergantungan spasial serta pengaruh faktor iklim eksternal, sehingga meningkatkan kinerja prediktif. SAR-X Kriging bekerja dengan memodelkan terlebih dahulu ketergantungan spasial antar lokasi, kemudian memasukkan variabel eksogen berupa tekanan permukaan, suhu udara, kelembaban, kecepatan angin, dan radiasi matahari untuk meningkatkan akurasi prediksi, serta terakhir menerapkan teknik kriging untuk interpolasi spasial. Metode ini dipilih karena mampu menangkap secara lebih baik ketergantungan spasial sekaligus pengaruh variabel eksternal dibandingkan metode konvensional. Hasil analisis menunjukkan adanya ketergantungan spasial yang signifikan antar kabupaten/kota di Pulau Jawa berdasarkan uji Moran’s Index. Model SAR-X terbaik diperoleh dengan variabel suhu udara dan kecepatan angin, mencapai nilai p-value sebesar 6.0352 × 10-9. Prediksi menggunakan SAR-X Kriging menghasilkan Mean Absolute Percentage Error (MAPE) sebesar 3,82%, mengungguli metode SAR-X yaitu MAPE 4,68% dan metode Ordinary Kriging yaitu MAPE 3,86%. Secara praktis, hasil ini dapat meningkatkan kualitas prediksi curah hujan yang bermanfaat dalam pengelolaan sumber daya air, perencanaan pertanian, serta strategi mitigasi banjir di Pulau Jawa.
Kata Kunci: curah hujan; iklim; MAPE; SAR-X; SAR-X Kriging.
2020MSC: 62H11, 86A32
Keywords
References
I. Dainty, S. H. Abdullah, and A. Priyati, “Analisis Peluang Curah Hujan untuk Penetapan Pola dan Waktu Tanam serta Pemilihan Jenis Komoditi yang Sesuai di Desa Masbagik Kecamatan Masbagik Kabupaten Lombok Timur,” J. Ilm. Rekayasa Pertan. dan Biosist., vol. 4, no. 1, pp. 207–216, 2016.
L. Y. Worku, A. Mekonnen, and C. J. Schreck, “Diurnal cycle of rainfall and convection over the Maritime Continent using TRMM and ISCCP,” Int. J. Climatol., vol. 39, no. 13, pp. 5191–5200, 2019, doi: 10.1002/joc.6121.
B. Yuniasih, W. N. Harahap, and D. A. S. Wardana, “Anomali Iklim El Nino dan La Nina di Indonesia pada 2013-2022,” AGROISTA J. Agroteknologi, vol. 6, no. 2, pp. 136–143, 2022, doi: 10.55180/agi.v6i2.332.
S. Sharma and P. P. Mujumdar, “On the relationship of daily rainfall extremes and local mean temperature,” J. Hydrol., vol. 572, no. 2019, pp. 179–191, 2019, doi: 10.1016/j.jhydrol.2019.02.048.
T. P. Roderick, C. Wasko, and A. Sharma, “Atmospheric Moisture Measurements Explain Increases in Tropical Rainfall Extremes,” Geophys. Res. Lett., vol. 46, no. 3, pp. 1375–1382, 2019, doi: 10.1029/2018GL080833.
C. Zhang, S. Wu, T. Li, Z. Yu, and J. Bian, “Interpreting the Trends of Extreme Precipitation in Florida through Pressure Change,” Remote Sens., vol. 14, no. 6, pp. 1–12, 2022, doi: 10.3390/rs14061410.
S. Mostamandi et al., “Sea Breeze Geoengineering to Increase Rainfall over the Arabian Red Sea Coastal Plains,” J. Hydrometeorol., vol. 23, no. 1, pp. 3–24, 2022, doi: 10.1175/JHM-D-20-0266.1.
M. J. Koetse and P. Rietveld, “The impact of climate change and weather on transport: An overview of empirical findings,” Transp. Res. Part D Transp. Environ., vol. 14, no. 3, pp. 205–221, 2009, doi: 10.1016/j.trd.2008.12.004.
A. F. Prein and A. J. Heymsfield, “Increased melting level height impacts surface precipitation phase and intensity,” Nat. Clim. Chang., vol. 10, no. 8, pp. 771–776, 2020, doi: 10.1038/s41558-020-0825-x.
M. Kim, Y. Kienast, J. K. Hatt, A. E. Kirby, and K. T. Konstantinidis, “Metagenomics indicate that public health risk may be higher from flooding following dry versus rainy periods,” Enviromental Microbiol., vol. 14, no. 2, pp. 265–273, 2022, doi: https://doi.org/10.1111/1758-2229.13047.
A. J. De Roos et al., “Heavy precipitation, drinking water source, and acute gastrointestinal illness in Philadelphia, 2015-2017,” PLoS One, vol. 15, no. 2, pp. 2015–2017, 2020, doi: 10.1371/journal.pone.0229258.
J. C. Semenza, “Cascading risks of waterborne diseases from climate change,” Nat. Immunol., vol. 21, no. 5, pp. 484–487, 2020, doi: 10.1038/s41590-020-0631-7.
H. Kuswanto, D. Setiawan, and A. Sopaheluwakan, “Clustering of Precipitation Pattern in Indonesia Using TRMM Satellite Data,” Eng. Technol. Appl. Sci. Res., vol. 9, no. 4, pp. 4484–4489, 2019, doi: 10.48084/etasr.2950.
K. Pakoksung, “Impact of Spatial Rainfall Scenarios on River Basin Runoff Simulation a Nan River Basin Study Using the Rainfall-Runoff-Inundation Model,” Eng, vol. 5, no. 1, pp. 51–69, 2024, doi: 10.3390/eng5010004.
H. Chen et al., “A spatiotemporal estimation method for hourly rainfall based on F-SVD in the recommender system,” Environ. Model. Softw., vol. 144, p. 105148, 2021, doi: 10.1016/j.envsoft.2021.105148.
S. Shadeed, A. Jayyousi, A. Khader, C. Chwala, and H. Kunstmann, “Comparative analysis of interpolation methods for rainfall mapping in the Faria catchment, Palestine,” An-Najah Univ. J. Res., vol. 36, no. 1, pp. 1–20, 2022.
J. Lee, P. C. B. Phillips, and F. Rossi, “Consistent Misspecification Testing in Spatial Autoregressive Models,” ERN Cross-Sectional Model., 2020, doi: https://doi.org/10.2139/ssrn.3683830.
A. N. Falah, B. N. Ruchjana, A. S. Abdullah, and J. Rejito, “Clustering spatial autoregressive kriging model for climate: A bibliometric analysis approach,” Int. J. Data Netw. Sci., vol. 7, no. 2, pp. 637–646, 2023, doi: 10.5267/j.ijdns.2023.3.008.
A. Luthfiarta, A. Febriyanto, H. Lestiawan, and W. Wicaksono, “Analisa Prakiraan Cuaca dengan Parameter Suhu, Kelembaban, Tekanan Udara, dan Kecepatan Angin Menggunakan Regresi Linear Berganda,” JOINS (Journal Inf. Syst., vol. 5, no. 1, pp. 10–17, 2020, doi: 10.33633/joins.v5i1.2760.
O. C. Satya, M. Arsali, A. K. Affandi, and P. M. Mandailing, “Spatial distribution and diurnal characteristics of rainfall in South Sumatra and surrounding areas based on Tropical Rainfall Measuring Mission (TRMM) data,” J. Phys. Conf. Ser., vol. 1568, no. 1, 2020, doi: 10.1088/1742-6596/1568/1/012024.
J. P. LeSage, The Theory and Practice of Spatial Econometrics. 1999.
K. Kopczewska, Applied Spatial Statistics and Econometrics, 1st ed. London: Routledge, 2020.
A. Anwar, “Spatial Analysis of Regional Poverty in Central Java Indonesia,” J. Din. Ekon. Pembang., vol. 5, no. 1, pp. 36–55, 2022, doi: 10.14710/jdep.5.1.36-55.
L. Anselin, “Spatial Econometrics: Methods and Models,” J. Am. Stat. Assoc., 1988.
L. Anselin, Spatial Econometrics: Methods and Models, 1st ed. Springer Dordrecht, 1988.
L. Anselin, “Spatial Econometrics,” in A Companion to Theoretical Econometrics, B. H. Baltagi, Ed. Blackwell Publishing, 2003.
Y. Chen, Y. Yang, and W. Wu, “Coal Seam Thickness Prediction based on Least Squares Support Vector Machines and Kriging Method,” Electron. J. Geotech. Eng., vol. 20, no. 1, pp. 167–176, 2015.
M. Armstrong, Basic Linear Geostatistics, 1st ed. Springer Berlin, Heidelberg, 1998.
A. Setiawan and R. Rosadi, “Spasial Data Mining Menggunakan Model SAR-Kriging,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 5, no. 3, p. 52, 2011, doi: 10.22146/ijccs.5213.
A. S. Abdullah, “Implementasi Spasial Data Mining menggunakan Model Spatial Autoregressive-Kriging (SAR-Kriging),” Universitas Gadjah Mada, 2009.
W. W. S. Wei, Time Series Analysis and Multivariate Methods. Canada : Addison Wesley Publishing Company, 2006.
C. D. Lewis, Industrial and Business Forecasting Methods. London: Butterworths, 1982.
D. N. Gujarati and D. C. Porter, Basic Econometrics, 5th ed. New York: McGraw-Hill, 2009.
A. Aprianti, N. Faulina, and M. Usman, “Generalized Space Time Autoregressive (GSTAR) Model for Air Temperature Forecasting in the South Sumatera, Riau, and Jambi Provinces,” Inpr. Indones. J. Pure Appl. Math., vol. 6, no. 1, pp. 1–13, 2024, doi: 10.15408/inprime.v6i1.36049.
D. I. Octaviyani, M. Y. Wijaya, and N. Fitriyati, “Estimation Parameter d in Autoregressive Fractionally Integrated Moving Average Model in Predicting Wind Speed,” Inpr. Indones. J. Pure Appl. Math., vol. 1, no. 2, 2019, doi: 10.15408/inprime.v1i2.13676.
J. A. Acero, P. Kestel, H. T. Dang, and L. K. Norford, “Impact of rainfall on air temperature, humidity and thermal comfort in tropical urban parks,” Urban Clim., vol. 56, no. June, p. 102051, 2024, doi: 10.1016/j.uclim.2024.102051.
A. N. Falah, B. N. Ruchjana, A. S. Abdullah, and J. Rejito, “The Hybrid Modeling of Spatial Autoregressive Exogenous Using Casetti’s Model Approach for the Prediction of Rainfall,” Mathematics, vol. 11, no. 17, pp. 1–21, 2023, doi: 10.3390/math11173783.
M. Abedini, M. A. Md Said, and F. Ahmad, “Integration of statistical and spatial methods for distributing precipitation in tropical areas,” Hydrol. Res., vol. 44, no. 6, pp. 982–994, 2013, doi: 10.2166/nh.2012.159.
DOI: 10.15408/inprime.v7i1.42070
Refbacks
- There are currently no refbacks.