On Performance Measures of a Fuzzy Priority Queue in a Transient Regime using the L-R Method
Abstract
In this paper, we proposed the performance measures of a Markovian queue with non-preemptive priority under transient conditions in a fuzzy environment. We study the transient performance measures of an FM/FM/1 queue with absolute priority. We analyze the characteristics of this model in a fuzzy environment by the L-R method of a fuzzy number A~=<m, a, b>_{LR}, where m, a, b are exponential functions of time—considering arrivals and services as triangular fuzzy numbers. The L-R method turns out to be very short and more practical compared to other methods, such as the DSW method (Dong, Shah and Wong), the α-cuts method, or the centroid method, because it allows us to obtain the membership functions, modal values, and supports of different performance measures and facilitates the graphical representation of the results obtained. A numerical example illustrates the validity of the method and the results obtained using it.
Keywords: performance measures; non-preemptive priority; triangular fuzzy numbers; LR method.
Abstrak
Pada artikel ini, kami mengusulkan ukuran kinerja antrian Markovian dengan prioritas non-preemptive dalam kondisi transien di lingkungan fuzzy. Kami mempelajari ukuran kinerja transien dari antrian FM/FM/1 dengan prioritas mutlak. Kami menganalisis karakteristik model ini dalam lingkungan fuzzy dengan metode L-R dari bilangan fuzzy A~=<m, a, b>_{LR}, dengan m, a, b adalah fungsi eksponensial terhadap waktu dengan mempertimbangkan kedatangan dan pelayanan sebagai bilangan fuzzy segitiga. Metode L-R ternyata sangat singkat dan lebih praktis dibandingkan dengan metode lain, seperti: metode DSW (Dong, Shah dan Wong), metode α-cuts, atau metode centroid, karena metode ini memungkinkan kita untuk mendapatkan fungsi keanggotaan, nilai modus, dan supports dari ukuran kinerja yang berbeda dan memfasilitasi representasi grafis dari hasil yang diperoleh. Contoh numerik menggambarkan validitas dari metode dan hasil yang diperoleh dengan menggunakan metode yang kami usulkan.
Kata Kunci: ukuran kinerja; prioritas non-preemptive; bilangan fuzzy segitiga; metode LR.
2020MSC: 60K25, 03E72.
Keywords
References
A. K. Erlang, “The theory of probabilities and telephone conversations,” Nyt. Tidsskr. Mat. Ser. B., vol. 20, pp. 33-39, 1909.
L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets and Systems, vol. 1, no. 1, pp. 3-28, 1978.
B. Kalpana and N. Anusheela, “Analysis of a single server non-preemptive fuzzy priority queue using LR method,” ARPN Journal of Engineering and Applied Sciences, vol. 13, no. 23, pp. 9306-9310, 2018.
S. Shanmugasundaram and B. Venkatesh, “Fuzzy retrial queues with priority using DSW algorithm,” TC, vol. 2, no. 2, pp. 1-1, 2016.
M. J. Pardo and D. de la Fuente, "Optimizing a priority-discipline queueing model using fuzzy set theory", Computers & Mathematics with Applications, Vol. 54(2), pp. 267-281, 2007.
W. Ritha and P. Yasodai, “Exploration of fuzzy preemptive-resume priority queuing system using robust ranking method,” International Journal of Aquatic Science, vol. 12, no. 2, pp. 3224-3230, 2021.
W. Ritha and L. Robert, “Fuzzy queues with priority discipline,” Applied Mathematical Sciences, vol. 4, no. 12, pp. 575-582, 2010.
J. Alonge et al., "Computing the performance parameters of Fuzzy Markovian Queueing System FM/FM/1 in transient regime by Flexible AlphaCuts Method", Journal of Computing Research and Innovation (JCRINN), 8 (1): 2. pp. 17-34, 2023.
O. D. Lama and R. M. M. Mabela, “Analysis of the Performance Parameters of Queueing Systems M/M/1 with Pre-Emptive Priority in Transient Regime”, Journal of Computing Research and Innovation 9(1), pp. 131–1 46, 2024.
L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338-353, 1965.
A. Kaufmann, Introduction to the Theory of Fuzzy Subsets. Academic Press, 1975.
O. Ziane, “Sur les nombres flous et ses opérations,” Mémoire de Master en Mathématiques, UMB, 2018.
S. Banerjee and T. K. Roy, “Arithmetic operations on generalized trapezoidal fuzzy number and its applications”, Turkish Journal of Fuzzy Systems, Vol.3, No.1, pp.16-44, 2012.
D. Dubois and H. Prade, “Operations on fuzzy numbers,” International Journal of Systems Science, vol. 9, pp. 613–626, 1978.
K. J. P. Mukeba, “Application of l-r method to single server fuzzy retrial queue with patient customers”, Journal of Pure and Applied Mathematics: Advances and Applications, Volume 16(1), pp. 43-59, 2016,
K. J. P. Mukeba and R. M. M. Mabela, ‘’ Computing Fuzzy Queueing Performance Measures by L-R Method”, Journal of Fuzzy Set Valued Analysis 1, pp. 57-67, 2015.
DOI: 10.15408/inprime.v6i2.41126
Refbacks
- There are currently no refbacks.