On Randers Change of a Generalized Exponential Metric
Abstract
In this paper, we study the properties of a special (α, β)-metric e^(k1β/α)+βe^(k2*β/α), the Randers change of the generalized exponential metric. We find the necessary and sufficient condition for this metric to be locally projectively flat and we also prove the conditions for this metric to be of the Berwald and Douglas type.
Keywords: Berwald space; Douglas space; Finsler space; -metric; projectively flat.
Abstrak
Pada artikel ini akan dipelajari sifat-sifat khusus dari (α, β) -metric e^(k1β/α)+βe^(k2*β/α), perubahan Randers dari metrik eksponensial umum. Kami menemukan syarat perlu dan cukup agar metrik ini menjadi datar secara lokal dan kami juga membuktikan syarat agar metrik ini bertipe Berwald dan Douglas.
Kata Kunci: ruang Berwald; ruang Douglas; ruang Finsler; -metric; projectively flat.
2020MSC: 53B20.
Keywords
References
M. Hashiguchi, "On Conformal transformations of Kropina metric," J. Math. Kyoto Univ., vol. 16, pp. 25-50, 1976.
M. S. Knebelman, "Conformal Geometry of generalized metric space," Proc. Nat. Acad. Sci. USA, vol. 15, pp. 376-379, 1929.
G. Randers, "On an asymmetrical metric in the four-space of general relativity," Phys. Rev., vol. 59, p. 195, 1941.
R. S. Ingarden, "Differential Geometry and Physics," Tensor N.S., vol. 30, pp. 201-209, 1976.
M. Matsumoto, "Projective changes of Finsler metric and projective flat Finsler space," Tensor N. S., vol. 34, pp. 303-315, 1980.
M. Matsumoto, "A slope of a mountain is a Finsler surface with respect to time measure," J. Math. Kyoto Univ., vol. 29, pp. 17-25, 1989.
G. Shanker and R. Ravindra, "On Randers change of exponential metric," Appl. Sci., vol. 15, pp. 94-103, 2013.
M. Matsumoto, "Projective flat Finsler spaces with (α,β)-metric," Rep. Math. Phys., vol. 30, pp. 15-20, 1991.
H. S. Park and I. Y. Lee, "On projectively flat Finsler spaces with (α,β)-metric," Commun. Korean Math. Soc., vol. 14, no. 2, pp. 373-383, 1999.
Y. Shen and L. Zhao, "Some projectively flat (α,β)-metrics," Sci. China A, vol. 49, pp. 838-851, 2006.
Z. Shen, "Projectively flat Randers metrics with constant flag curvature," Math. Ann., vol. 325, pp. 19-30, 2003.
Z. Shen and G. C. Yildirim, "On a class of projectively flat metrics with constant flag curvature," Canad. J. Math., vol. 60, no. 2, pp. 143-156, 2008.
Z. Shen, "On projectively flat (α,β)-metrics," Canad. Math. Bull., vol. 52, no. 1, pp. 132-144, 2009.
S. S. Chern and Z. Shen, Riemann-Finsler Geometry, Singapore: World Scientific, 2005.
G. Hamel, "Über die Geometrien in denen die Geraden die Kürzesten sind," Math. Ann., vol. 16, pp. 25-50, 1903.
M. Matsumoto, "The Berwald connection of Finsler space with an (α,β)-metric," Tensor N. S., vol. 50, pp. 18-21, 1991.
S. Bácsó and M. Matsumoto, "On the Finsler spaces of Douglas type. A generalization of the notion of Berwald space," Publ. Math. Debrecen, vol. 51, pp. 385-406, 1997.
Y. Yu, "Projectively flat exponential Finsler metrics," J. Zhejiang Univ. Sci. A, vol. 6, pp. 1068-1076, 2006.
M. Hashiguchi, S. Hojo and M. Matsumoto, "On Landsberg spaces of two dimension with (α,β)," J. Korean Math. Soc., vol. 10, pp. 17-26, 1973.
DOI: 10.15408/inprime.v6i2.40885
Refbacks
- There are currently no refbacks.