Global Stability Analysis of Susceptible, Infected, Recovered (S, I, R) Model Measles Vaccination Based on Age

Juhari Juhari, Olivia Karinina, Abdul Aziz, Evawati Alisah

Abstract


Abstract

This study discusses the behavioral analysis model of the Susceptible-Infected-Recovered (SIR) epidemic of the spread of measles based on age structure. The total population of measles is grouped into four age groups, namely the first age group (0-4 years), the second age group (5-9 years), the third age group (10-14 years) and the fourth age group (> 15 years). The steps in modeling behavior can be done by determining the equilibrium point, and the basic reproduction number and performing a global stability analysis by building the Lyapunov function. This research contributes to providing information both to the government and the community.

Keywords: Epidemic Model; SIR; Lyapunov function; Measles.

 

Abstrak

Penelitian ini membahas model analisis perilaku epidemi Susceptible-Infected-Recovered (SIR) penyebaran campak berdasarkan struktur umur. Jumlah penduduk yang terkena campak dikelompokkan menjadi empat kelompok umur, yaitu kelompok umur pertama (0-4 tahun), kelompok umur kedua (5-9 tahun), kelompok umur ketiga (10-14 tahun) dan kelompok umur keempat. (> 15 tahun). Langkah-langkah dalam pemodelan perilaku dapat dilakukan dengan menentukan titik ekuilibrium, bilangan reproduksi dasar dan melakukan analisis stabilitas global dengan membangun fungsi Lyapunov. Penelitian ini memberikan kontribusi untuk memberikan informasi baik kepada pemerintah maupun masyarakat.

Kata Kunci: Model Epidemi; PAK; fungsi Lyapunov; Campak.

 

2020MSC: 00A71.


Keywords


Epidemic Model; SIR; Lyapunov function; Measles

References


Dennis &. Cullen, Differential Equations with Boundary Value Problems (8 ed), New York: Cengage Learning, 2013.

Waluya, Persamaan Differensial, Yogyakarta: Graha Ilmu, 2006.

Hariyanto, Persamaan Diferensial Biasa, Jakarta: Universitas Terbuka, 1992.

Maldonando, “Principles and Practice of Pediatic Infectious Diseases,” Rubeola Virus (Measles and Subacute Sclerosing Panencephalitis), pp. 1137-1144, 2011.

WHO, “Treating Measles in Children,” World Health Organization, 2004. [Online]. Available: www.who.int/immunization.

Nurani, “Gambaran Epidemiologi Kasus Campak di Kota Cirebon 2004-2011,” Jurnal Kesehatan Masyarakat, pp. 862-874, 2012.

Kemeterian Kesehatan Indonesia, “Petunjuk Teknis Kampanye Imunisasi Measles-Rubella,” 2017. [Online]. Available: http://www.depkes.go.id. [Accessed Januari 2018].

A. N. Azizah, “Model SIR Pada Epidemi Penyakit Campak Berdasarkan Umur Dengan Pengaruh Imunisasi,” Jurnal Ilmiah Matematika, vol. 3, no. 6, 2017.

Mutmainah, “Model Dinamika Penyebaran Penyakit Campak Dengan Pengaruh Vaksinasi dan Penerapannya di Provinsi Nusa Tenggara Barat,” Jurnal Matematika, vol. 8, no. 2, pp. 112-121, 2019.

Linhua Zhou, et al., “Global Dynamics of a Discrete Age-Structured SIR Epidemic Model with Applications to Measles Vaccination Strategies,” Journal Mathematics Bioscience, vol. 308, pp. 385-395, 2019.

O. Karinina, Analisis Perilaku Model Penyebaran Campak SIR Dengan Struktur Umur, Universitas Islam Negeri Maulana Malik Ibrahim Malang, 2021.

Lixin Hao, et al., “Evaluating vaccination policies to accelerate measles elimination in China: a meta-population modelling study,” International Journal Epidemiol, vol. 48, no. 4, pp. 1240-1251, 2019.

Mostafa Adimy, et al., “Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase,” Mathematical Biosciences and Engineering, vol. 17, no. 2, pp. 1329-1354, 2020.

Getachew Teshome Tilahun, et al., “Stochastic model of measles transmission dynamics with double dose vaccination,” Infectious Disease Modelling, vol. 5, pp. 478-494, 2020.

Hidayat, “Global stability of varicella model,” Journal of Physics: Conference Series (JPCS), p. 1722, 2021.

Anusit Chamnan, et al., “Effect of a Vaccination against the Dengue Fever Epidemic in an Age Structure Population: From the Perspective of the Local and Global Stability Analysis,” Mathematics, vol. 10, no. 4, p. 904, 2022.

Miled El Hajji, et al., “A mathematical investigation of an "SVEIR" epidemic model for the measles transmission,” Mathematical Biosciences and Engineering, vol. 19, no. 3, pp. 2853-2875, 2022.

Nahdawiyah, Analisis Kestabilan Global dan Kontrol Optimal Model Penyakit Campak, Universitas Islam Negeri Maulanan Malik Ibrahim Malang, 2020.

Mustafa Rachik, Omar Balatif, Abdelfatah Kaudere and Khajji Bouchaib, “Mathematical Modeling, analysis and Optimal Control of an Alcohol Dringking Model with liver Complication.,” Commun. Math. Biol. Neurosci, 2020b.

Reni Sundari & Erna Aprilia, “Kontruksi Fungsi Lyapunov untuk Menentukan Kestabilan,” Jurnal Sains dan Seni ITS, vol. 6, no. 1, pp. 28-32, 2017.

J. P. Salle, “The Stability of Dynamical Systems,” Regional Conference Series in Applied Mathematics, SIAM, vol. 25, 1976.


Full Text: PDF

DOI: 10.15408/inprime.v5i2.32318

Refbacks

  • There are currently no refbacks.