The Alpha Power Transformed Logistic Distribution: Properties, application and VaR Estimation

Anayo Charles Iwuji, Emmanuel Wilfred Okereke, Ben Ifeanyichukwu Oruh, Joy Chioma Nwabueze



In this paper, a new three-parameter distribution, which is a member of the Alpha Power Transformed Family of distributions, is introduced. The new distribution is a generalization of the logistic model called the alpha power transformed logistic (APTL) distribution. Some mathematical properties of the new distribution like moments, quantile function, median, skewness, kurtosis, Rényi entropy, and order statistics are discussed. The parameters of the distribution are estimated using the maximum likelihood estimation method and a simulation study is performed to investigate the effectiveness of the estimates. The usefulness and flexibility of the APTL distribution in modelling financial data are investigated using two portfolio stock indices, namely the NASDAQ and New York stock indices, both from the United States stock market. Based on the model selection criteria, we are able to establish empirically that the APTL distribution is the best for modelling the two data sets, among the various distributions compared in the study. For each of the data, the quantile value-at-risk estimates for the APTL distribution give the smaller expected portfolio loss at high confidence levels in comparison to those of the other distributions.

Keywords: Alpha power transformed family of distributions; logistic distribution; maximum likelihood estimation; portfolio investments; value-at-risk.



Pada artikel ini, diperkenalkan distribusi baru dengan tiga parameter yang merupakan anggota dari keluarga distribusi Alpha Power Transformed. Distribusi baru ini merupakan generalisasi dari model logistik yang disebut distribusi Alpha Power Transform Logistics (APTL). Selain itu, dibahas pula beberapa sifat matematika dari distribusi tersebut yaitu momen, fungsi kuantil, median, kemiringan, kurtosis, entropi Rényi, dan statistik terurut. Parameter distribusi diestimasi menggunakan metode maximum likelihood estimation dan studi simulasi dilakukan untuk menyelidiki keefektifan estimasi. Kegunaan dan fleksibilitas distribusi APTL dalam pemodelan data keuangan diselidiki menggunakan dua indeks saham portofolio dari pasar saham Amerika Serikat yaitu indeks saham NASDAQ dan New York. Berdasarkan kriteria pemilihan model, secara empiris, dihasilkan bahwa APTL adalah distribusi terbaik untuk memodelkan dua set data di antara berbagai distribusi yang dibandingkan pada penelitian ini. Untuk setiap data, estimasi kuantil value-at-risk untuk distribusi APTL memberikan kerugian portofolio yang diharapkan lebih kecil dengan tingkat kepercayaan tinggi dibandingkan dengan distribusi lainnya.

Kata Kunci: distribusi dari keluarga Alpha power transformed; distribusi logistik; maximum likelihood estimation; investasi portofolio; value-at-risk.


2020MSC: 62E10.


Alpha power transformed family of distributions; logistic distribution; maximum likelihood estimation; portfolio investments; value-at-risk


F. Oladapo, A. P. Olufemi, S. O. Abayoni, and O. S. Daniel, “Exchange Rate Volatility and Stock Market Performance in Nigeria,” Nigerian Journal of Management Sciences, vol. 6, no. 1, pp. 308-317, 2021.

R. Bhowmik and S. Wang, “Stock Market Volatility and Return Analysis: A Systematic Literature Review,” Entropy, vol. 22, pp. 1-18, 2020.

A. Megaritis, N. Vlastakis and A. Triantafyllon, “Stock Market Volatility and Jumps in Times of Uncertainty,” Journal of International Money and Finance, vol. 113, pp 1-24, 2021.

E. Entri, W. Aipama, A. Razak, L. Sari, and S. Renil, “Stock Price Volatility During the COVID-19 Pandemic: The GARCH model,” Investment Management and Financial Innovations, vol. 18, no. 3, pp 12-20, 2021.

M. C. Korkmaz, E. Altun, H. M. Yousef, A. Z. Afify and S. Najarajah, “The BurrXPareto Distribution: Properties, Applications and VaR Estimation,” Journal of Risk and Financial Management, vol. 11, no. 1, pp 1-16, 2018.

G. Rodriguez, “Extreme value theory: An Application to the Peruvian Stock Market Returns,” Revista de Metodos Cuantitatuos Para la Economica y La Empressa, vol. 23, pp 48-74 ,2017.

M. I. Ahmad, “Analysis of Financial Data by Generalized Logistic Distribution,” International Journal of Statistics and applied mathematics, vol. 3, no. 5, pp 69-72, 2020.

Y. An and E.A. Duah, “The Distribution Analysis of Extreme Returns of Nikkei 225 Index: Based on Extreme Value Distributions if GEV and GL,” Archives of Business Research, vol. 5, no. 1, pp 171-181, 2017.

R. O. Gupta and D. Kundu, “Generalize Logistic Distributions,” Journal of Applied Statistical Sciences, vol. 18, no. 1, pp 1-23, 2010.

P. J. Hazarika and S. Chakraborty, “A Note on Alpha-Skewed-Generalized Logistic Distribution,” IOSR Journal of Mathematics, vol. 11, no. 1, pp 85-88, 2015.

L. P. Sapkota, “Exponentiated Exponential Logistic Distribution: Some Properties and Application,” Janapriya Journal of Interdisciplinary Studies, pp 100-108, 2020.

A. Mahdavi and D. Kundu, “A New Method for Generating Distributions with Application to Exponential Distribution,” Communications in Statistics-Theory and Methods, vol 46, pp 6543-6557, 2017.

K. M. Sakthivvel and A, Arul-chezhian, “Alpha Power Transformed Pareto Distribution and Its Properties with Application,” Malaya Journal of Matematik, vol. 5, no. 1, pp 52-57, 2020.

L. A. Rosa, S. Nurrohmah and I. Fithriani, “Alpha power transformed Lindsley distribution,” Proceeding of ICSA, pp 130-142, 2019.

I. Elbatal, M. Elgarhy and B. M. Golam-Kibria, “Alpha Power Transformed Weibull-G Family of Distributions and Applications,” Journal of Statistical Theory and Applications. Vol. 20, no. 2, pp 340-354, 2020.

R. A. ZeinEldin, M. A. Haq, S. Haghmi and M. Elsehaty, “Alpha Power Transformed Inverse Lomax Distribution with Different Methods of Estimation and Application,” Hindawi, ID 1860813, pp 1-15, 2020.

M. A. Aldahlan, “Alpha Power Transformed Log-Logistic Distribution with Application to Breaking Stress Data,” Advances of Mathematical Physics, ID 2193787, pp 1-9, 2020.

K. Syuhada, R. Nuraini and D. Mahfudhotin, “Quantile-Based Estimation VaR Forecast and Dependence Measure: A Simulation Approach,” Journal of applied mathematics, ID 8276019, pp 1-14, 2020.

D. L. Oslon and D. Wu, “The Impact of Distribution on Value-at-Risk Measures,” Mathematical and Computer Modelling, Vol. 58, pp 1670-1676, 2013.

D. Lindholm, “On Value-at-Risk and More Extreme A Study on Quantitative Market Risk Measurement,” Masters Thesis, Statistics department, Uppsale Universit, 2015.

I. Khindanova, S. Rachev, and E. Schwartz, “Stable Modelling of Value at Risk,” Mathematical and Computer Modelling, vol. 34, pp 1223-1259, 2001.

MathWorks. “Information criteria for model selection - MATLAB and Simulink” The MathWorks, Inc. 1994-2023.

“Logistic distribution.” Wikipedia, 28 March 2023, Logistic distribution.

Full Text: PDF

DOI: 10.15408/inprime.v5i1.31035


  • There are currently no refbacks.