An Optimal Control Analysis of Dengue Fever
Abstract
Dengue fever is one of the most infectious diseases in the world, according to data issued by the World Health Organization in 2014. It is responsible for a huge number of deaths each year around the world, particularly in tropical nations. The dengue virus (DENV) causes dengue fever, which is spread by the female Aedes aegypti mosquito. We provide a mathematical model of dengue fever transmission through hospitalization with optimal management in this paper. Before being simulated in MATLAB, this optimum control problem is numerically resolved. Vaccination, pesticide use, and prevention are all examples of optimal control in this study. The simulation results demonstrate that dengue infection can be considerably reduced by vaccination, pesticide use, and prevention.
Keywords: Dengue fever; Mathematical modelling; Optimal control.
Abstrak
Demam berdarah adalah salah satu penyakit paling menular di dunia, menurut data yang dikeluarkan oleh Organisasi Kesehatan Dunia pada tahun 2014. Penyakit ini menyebabkan banyak kematian setiap tahun di seluruh dunia, terutama di negara-negara tropis. Virus dengue (DENV) menyebabkan demam berdarah, yang disebarkan oleh nyamuk Aedes aegypti betina. Kami menyediakan model matematis penularan demam berdarah melalui rawat inap dengan penatalaksanaan optimal dalam makalah ini. Masalah kontrol optimal ini diselesaikan secara numerik sebelum disimulasikan di MATLAB. Vaksinasi, penggunaan pestisida, dan pencegahan merupakan contoh pengendalian yang optimal dalam penelitian ini. Hasil simulasi menunjukkan bahwa infeksi dengue dapat dikurangi dengan vaksinasi, penggunaan pestisida, dan pencegahan.
Kata Kunci: Demam berdarah; Pemodelan matematika; Kontrol optimal.
2020MSC: 00A71, 92B05.
Keywords
References
“Dengue and severe dengue.” http://www.who.int/mediacentre/factsheets/fs117/en/.
D. J. Gubler and G. G. Clark, “Dengue/dengue hemorrhagic fever: the emergence of a global health problem.,” Emerg. Infect. Dis., vol. 1, no. 2, pp. 55–57, 1995, doi: 10.3201/eid0102.952004.
D. A. Shroyer, “Vertical maintenance of dengue-1 virus in sequential generations of Aedes albopictus.,” J. Am. Mosq. Control Assoc., vol. 6, no. 2, pp. 312–314, 1990.
D. V. Net, “Dengue virus transmission,” 2019. https://www.denguevirusnet.com/transmission.html.
S. B. Halstead, S. Nimmannitya, and S. N. Cohen, “Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered,” yale J. Biol. Med., vol. 42, no. 5, pp. 100–105, 1970, doi: 10.4324/9781003179931-175.
M. Aguiar, N. Stollenwerk, and S. B. Halstead, “The Impact of the Newly Licensed Dengue Vaccine in Endemic Countries,” PLoS Negl. Trop. Dis., vol. 10, no. 12, pp. 1–23, 2016, doi: 10.1371/journal.pntd.0005179.
N. M. Ferguson et al., “Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti,” Sci. Transl. Med., vol. 7, no. 279, 2015, doi: 10.1126/scitranslmed.3010370.
T. T. Zheng and L. F. Nie, “Modelling the transmission dynamics of two-strain Dengue in the presence awareness and vector control,” J. Theor. Biol., vol. 443, pp. 82–91, 2018, doi: 10.1016/j.jtbi.2018.01.017.
T. Sardar, S. Rana, and J. Chattopadhyay, “A mathematical model of dengue transmission with memory,” Commun. Nonlinear Sci. Numer. Simul., vol. 22, no. 1–3, pp. 511–525, 2015, doi: 10.1016/j.cnsns.2014.08.009.
H. S. Rodrigues, M. T. T. Monteiro, and D. F. M. Torres, “Vaccination models and optimal control strategies to dengue,” Math. Biosci., vol. 247, no. 1, pp. 1–12, 2014, doi: 10.1016/j.mbs.2013.10.006.
M. A. Khan and Fatmawati, “Dengue infection modeling and its optimal control analysis in East Java, Indonesia,” Heliyon, vol. 7, no. 1, p. e06023, 2021, doi: 10.1016/j.heliyon.2021.e06023.
A. K. Supriatna, E. Soewono, and S. A. van Gils, “A two-age-classes dengue transmission model,” Math. Biosci., vol. 216, no. 1, pp. 114–121, 2008, doi: 10.1016/j.mbs.2008.08.011.
L. Esteva and C. Vargas, “A model for dengue disease with variable human population,” J. Math. Biol., vol. 38, no. 3, pp. 220–240, 1999, doi: 10.1007/s002850050147.
L. Esteva and C. Vargas, “Influence of vertical and mechanical transmission on the dynamics of dengue disease,” Math. Biosci., vol. 167, no. 1, pp. 51–64, 2000, doi: 10.1016/S0025-5564(00)00024-9.
L. Esteva and C. Vargas, “Analysis of a dengue disease transmission model,” Math. Biosci., vol. 150, no. 1, pp. 131–151, 1998.
C. Champagne and B. Cazelles, “Comparison of stochastic and deterministic frameworks in dengue modelling,” Math. Biosci., vol. 310, pp. 1–12, 2019, doi: 10.1016/j.mbs.2019.01.010.
S. Pimsamarn, W. Sornpeng, S. Akksilp, P. Paeporn, and M. Limpawitthayakul, “Detection of insecticide resistance in Aedes aegypti to organophosphate and synthetic pyrethroid compounds in the north-east of Thailand,” Dengue Bull., vol. 33, no. 1, pp. 194–202, 2009.
M. T. M. Andrighetti, F. Cerone, M. Rigueti, K. C. Galvani, and M. L. Da Graça Macoris, “Effect of pyriproxyfen in Aedes aegypti populations with different levels of susceptibility to the organophosphate temephos,” Dengue Bull., vol. 32, pp. 186–198, 2008.
K. E. Olson, L. Alphey, J. O. Carlson, and A. A. James, "Genetic approaches in Aedes aegypti for control of dengue: an overview," Proc. Jt. WHO/TDR, NIAID, IAEA Front. Work. Bridg. Lab. F. Res. Genet. Control Dis. Vectors Nairobi, 2004, doi: 10.1007/978-1-4613-8139-6_5.
E. Soewono and A. Supriatna, “A Two-dimensional Model for the Transmission of Dengue Fever Disease,” Bull. Malaysian Math. Sci. Soc, no. 007, pp. 1–11, 2001, [Online]. Available: http://pustaka.unpad.ac.id/wp-content/uploads/2009/06/a_two-dimensional_model_for_the_transmission.pdf.
P. Pongsumpun, K. Patanarapelert, M. Sriprom, S. Varamit, and I. M. Tang, “Infection risk to travelers going to dengue fever endemic regions,” Southeast Asian J. Trop. Med. Public Health, vol. 35, no. 1, p. 155—159, Mar. 2004, [Online]. Available: http://europepmc.org/abstract/MED/15272760.
H. S. Rodrigues, M. T. T. Monteiro, and D. F. M. Torres, “Optimization of dengue epidemics: A test case with different discretization schemes,” AIP Conf. Proc., vol. 1168, no. May 2014, pp. 1385–1388, 2009, doi: 10.1063/1.3241345.
H. S. Rodrigues, M. T. T. Monteiro, and D. F. M. Torres, “Insecticide control in a dengue epidemics model,” AIP Conf. Proc., vol. 1281, no. May 2014, pp. 979–982, 2010, doi: 10.1063/1.3498660.
D. V. Net, “Treatment of dengue,” 2018. http://www.denguevirusnet.com/treatment.html.
G. Zhu et al., “Effects of human mobility, temperature and mosquito control on the spatiotemporal transmission of dengue,” Sci. Total Environ., vol. 651, pp. 969–978, 2019, doi: 10.1016/j.scitotenv.2018.09.182.
I. Ghosh, P. K. Tiwari, and J. Chattopadhyay, “Effect of active case finding on dengue control: Implications from a mathematical model,” J. Theor. Biol., vol. 464, pp. 50–62, 2019, doi: 10.1016/j.jtbi.2018.12.027.
A. Poursherafatan and A. Delavarkhalafi, “The spectral linear filter method for a stochastic optimal control problem of partially observable systems,” Optim. Control Appl. Methods, vol. 41, no. 2, pp. 417–429, 2020, doi: 10.1002/oca.2550.
A. Piunovskiy, A. Plakhov, and M. Tumanov, “Optimal impulse control of a SIR epidemic,” Optim. Control Appl. Methods, vol. 41, no. 2, pp. 448–468, 2020, doi: 10.1002/oca.2552.
R. Jan, M. A. Khan, and J. F. Gómez-Aguilar, “Asymptomatic carriers in transmission dynamics of dengue with control interventions,” Optim. Control Appl. Methods, vol. 41, no. 2, pp. 430–447, 2020, doi: 10.1002/oca.2551.
Ahmadin and Fatmawati, “Mathematical modeling of drug resistance in tuberculosis transmission and optimal control treatment,” Appl. Math. Sci., vol. 8, no. 92, pp. 4547–4559, 2014, doi: 10.12988/ams.2014.46492.
E. Bonyah, M. A. Khan, K. O. Okosun, and J. F. Gómez-Aguilar, “Modelling the effects of heavy alcohol consumption on the transmission dynamics of gonorrhea with optimal control,” Math. Biosci., vol. 309, no. November 2018, pp. 1–11, 2019, doi: 10.1016/j.mbs.2018.12.015.
F. B. Agusto, “Optimal isolation control strategies and cost-effectiveness analysis of a two-strain avian influenza model,” BioSystems, vol. 113, no. 3, pp. 155–164, 2013, doi: 10.1016/j.biosystems.2013.06.004.
F. Agusto and S. Lenhart, “Optimal control of the spread of malaria superinfectivity,” J. Biol. Syst., vol. 21, no. 4, 2013, doi: 10.1142/S0218339013400020.
Fatmawati and H. Tasman, “An optimal control strategy to reduce the spread of malaria resistance,” Math. Biosci., vol. 262, no. C, pp. 73–79, 2015, doi: 10.1016/j.mbs.2014.12.005.
S. Ullah, M. A. Khan, and J. F. Gómez-Aguilar, “Mathematical formulation of hepatitis B virus with optimal control analysis,” Optim. Control Appl. Methods, vol. 40, no. 3, pp. 529–544, 2019, doi: 10.1002/oca.2493.
Fatmawati, U. Dyah Purwati, F. Riyudha, and H. Tasman, “Optimal control of a discrete age-structured model for tuberculosis transmission,” Heliyon, vol. 6, no. 1, p. e03030, 2020, doi: 10.1016/j.heliyon.2019.e03030.
L. S. Pontryagin, “L.S. Pontryagin Selected Works Volume 4. The Mathematical Theory of Optimal Processes,” vol. 4-The Ma, 1986.
Mardlijah, N. Ilmayasinta, and E. A. Irhami, “Optimal control for extraction lipid model of microalgae Chlorella Vulgaris using PMP method,” 2019, doi: 10.1088/1742-6596/1218/1/012043.
Mardlijah, N. Ilmayasinta, L. Hanafi, and S. Sanjaya, “Optimal Control of Lipid Extraction Model on Microalgae Using Linear Quadratic Regulator ( LQR ) and Pontryagin Maximum Principle ( PMP ) Methods,” pp. 129–141, 2018.
N. Ilmayasinta and H. Purnawan, “Optimal Control in a Mathematical Model of Smoking,” J. Math. Fundam. Sci., vol. 53, no. 3, pp. 380–394, 2021, doi: 10.5614/j.math.fund.sci.2021.53.3.4.
N. Ilmayasinta, E. Anjarsari, and M. W. Ahdi, “Optimal Control for Smoking Epidemic Model,” Proc. 7th Int. Conf. Res. Implementation, Educ. Math. Sci. (ICRIEMS 2020), vol. 528, no. Icriems 2020, pp. 323–328, 2021, doi: 10.2991/assehr.k.210305.046.
O. J. Peter, R. Viriyapong, F. A. Oguntolu, P. Yosyingyong, H. O. Edogbanya, and M. O. Ajisope, “Stability and optimal control analysis of an scir epidemic model,” J. Math. Comput. Sci., vol. 10, no. 6, pp. 2722–2753, 2020, doi: 10.28919/jmcs/5001.
M. Zamir, T. Abdeljawad, F. Nadeem, A. Wahid, and A. Yousef, “An optimal control analysis of a COVID-19 model,” Alexandria Eng. J., vol. 60, no. 3, pp. 2875–2884, 2021, doi: 10.1016/j.aej.2021.01.022.
DOI: 10.15408/inprime.v5i2.30392
Refbacks
- There are currently no refbacks.