Research Trends in Mathematical Modeling Applied to Pandemic Cases: A Bibliometric Analysis

Azma Rosyida, Risqi Utami, Janu Arlinwibowo, Gupita Nadindra Fatima, Ade Ima Afifa Himayati



The disease caused by the virus has caused a continuous pandemic worldwide since 2012. In order to slow down the rapid spread of the virus, many countries have taken recovery measures. This paper aims to analyze the trends of modeling pandemic cases in Scopus-indexed journals. The research method is a literature review using a bibliometric analysis approach starting from defining the keywords modeling' and ‘pandemic' in the Publish or Perish application with Google Scholar as the database. After narrowing the results by selecting the topic of modeling the pandemic problem it consisted of 200 articles in total. After that, the metadata was compiled using the Mendeley application, the VosViewer application was used to create a research trend visualization. The results obtained by bibliometric analysis show that the number of publications continues to increase. Which journals are published, which organizations and countries publish the most, how the evolution of perspective has changed since 2012, and which articles are most cited. We conclude that since the pandemic, there is a possibility of an evolution in the quality of publications.

Keywords: bibliometric analysis; pandemic; mathematical model; Mendeley; Publish or Perish; Vosviewer.



Penyakit yang diakibatkan dari virus telah menyebabkan pandemi berkelanjutan di seluruh dunia sejak 2012. Untuk memperlambat penyebaran virus yang cepat, banyak negara telah mengambil langkah pemulihan. Tulisan ini bertujuan untuk menganalisis tren pemodelan kasus pandemi di jurnal terindeks Scopus. Metode penelitian adalah kajian pustaka dengan pendekatan analisis bibliometrik dimulai dari pendefinisian kata kunci ‘pemodelan’ dan 'pandemi' pada aplikasi Publish or Perish dengan database Google Scholar. Setelah dilakukan penyempitan hasil dengan pemilihan topik pemodelan masalah pandemi  maka total artikel menjadi 200 artikel. Setelah itu dilakukan kompilasi metadata menggunakan aplikasi Mendeley, aplikasi VosViewer digunakan untuk membuat visualisasi trend penelitian. Hasil yang diperoleh dengan analisis bibliometrik menunjukkan bahwa jumlah publikasi terus meningkat. Jurnal mana yang diterbitkan, organisasi dan negara mana yang paling banyak menerbitkan, bagaimana evolusi perspektif telah berubah sejak 2012, dan artikel mana yang paling banyak dikutip. Kami menyimpulkan bahwa sejak pandemi, ada kemungkinan terjadi evolusi kualitas publikasi.

Kata Kunci: analisis bibliometrik; pandemi; model matematika; Mendeley; Publish or Perish; Vosviewer.


2020MSC: 00A71, 92B05.


bibliometric analysis; pandemic; mathematical model; Mendeley; Publish or Perish; Vosviewer


T. Toharudin et al., “Bayesian Poisson Model for COVID-19 in West Java Indonesia Spatial Analysis View project Bayesian Poisson Model for COVID-19 in West Java Indonesia,” Sylwan, vol. 164, no. 6. p. 279–290, 2020, [Online]. Available: On August 20, 2022.

R. Rodríguez-Soler, J. Uribe-Toril, and J. De Pablo Valenciano, "Worldwide trends in scientific production on rural depopulation, bibliometric analysis using the bibliometric R-tool," Land use policy, vol. 97, 2020, doi: 10.1016/j.landusepol.2020.104787.

M. Batista, “Estimation of the final size of the second phase of the coronavirus COVID 19 epidemic by the logistic model,” medRxiv, pp. 1–13, 2020, doi: 10.1101/2020.03.11.20024901.

D. Sridhar and M. S. Majumder, “Modeling a pandemic,”BMJ, vol. 369, no. April, p. 2–3, 2020, doi: 10.1136/bmj.m1567.

H. Akbari, R. Tabrizi, K. B. Lankarani, H. Aria, S. Vakili, F. Asadian, S. Noroozi, P. Keshavarz, and S. Faramarz, "The Role of cytokine profiles and lymphocyte subsets in severity of coronavirus disease 2019 (COVID-19): Systematic review and meta-analysis," Life Science., vol. 258, 2020, doi:

O. Pfaar et al., “Treatment of allergen immunotherapy in the COVID-19 pandemic: ARIA-EAACI Statement,” Allergy Eur. J. Allergy Clinic. Immunol., vol. 75, no. 7, p. 1546–1554, 2020, doi: 10.1111/all.14336.

P. Vetter et al., “Daily Viral Kinetics and Assessment of Innate and Adaptive Immune Responses in COVID-19: Case Series,” mSphere, vol. 5, no. 6, 2020, doi: 10.1128/msphere.00827-20.

X. Jiang et al., “Towards an artificial intelligence framework for data-driven predictions of the clinical severity of the coronavirus,” Comput. Mater. Continua, vol. 63, no. 1, p. 537–551, 2020, doi: 10.32604/cmc.2020.010691.

M. Javaid, A. Haleem, R. Vaishya, S. Bahl, R. Suman, and A. Vaish, "Industrial Technology 4.0 and its application in fighting the COVID-19 pandemic," Diabetes Metab. syndr. Clinic. Res. round., vol. 14, no. 4, p. 419–422, 2020, doi: 10.1016/j.dsx.2020.04.032.

R. Coimbra et al., “Recommendations of the European Society of Trauma and Emergency Surgery (ESTES) for trauma and preparation for emergency surgery during a period of infection with COVID-19,” Eur. J. Trauma Emerg. Surg., vol. 46, no. 3, p. 505–510, 2020, doi: 10.1007/s00068-020-01364-7.

C. Wen Shen and J. Tsung Ho, "Technologically enhanced learning in higher education: Bibliometric analysis with a latent semantic approach, " Computer. Human Behavior., vol. 104, 2020, doi: 10.1016/j.chb.2019.106177.

G. A. Stillman and JP Brown, "ICME-13 Monographs Lines of Inquiry in Mathematical Modeling Research in Education." [Online]. Available at on August 24, 2022.

G. M. Khalil and C. A. Gotway Crawford, "US-based research bibliometric analysis of behavioral risk factor surveillance systems," I. J. Previously Medicine, vol. 48, no. 1, 2015, doi: 10.1016/j.amepre.2014.08.021.

DI Ferraz and N. de Melo Santos, "The relationship between service innovation and performance: a bibliometric analysis and proposed research agenda," RAI Rev.Adm.e Inovação, vol. 13, no. 4, p. 251–260, 2016, doi: 10.1016/j.rai.2016.09.005.

W. Liu, G. Hu, L. Tang, and Y. Wang, "China's global growth in social science research: Uncovering evidence from bibliometric analysis of SSCI publications (1978-2013)," J. Informer., vol. 9, no. 3, 2015, doi: 10.1016/j.joi.2015.05.007.

R. Farooq, S. Rehman, M. Ashiq, N. Siddique, and S. Ahmad, “Bibliometric analysis of the coronavirus disease (COVID-19) literature published in Web of Science 2019–2020,” J. Fam. Community Medicine, vol. 28, no. 1, p. 1, 2021, doi: 10.4103/jfcm.jfcm_332_20.

P. Wang and D. Tian, “Bibliometric analysis of global scientific research on COVID-19,” J. Bios. Biosafety, vol. 3, no. 1, p. 4–9, 2021, doi: 10.1016/j.jobb.2020.12.002.

D. Nepogodievet al., “Cancellation of elective surgery due to the COVID-19 pandemic: global predictive modeling to inform surgery recovery plans,” Br. J. Surg., vol. 107, no. 11, p. 1440–1449, 2020, doi: 10.1002/bjs.11746.

Q. Lin et al., “Conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reactions and government actions,” Int. J. Infect. Dis., vol. 93, p. 211–216, 2020, doi: 10.1016/j.ijid.2020.02.058.

M. Tahir ul Qamar, S. M. Alqahtani, M. A. Alamri, and L. L. Chen, "Structural basis of drug discovery for SARS-CoV-2 3CLpro and anti-COVID-19 from medicinal plants," J. Pharmacy. Anal., vol. 10, no. 4, p. 313–319, 2020, doi: 10.1016/j.jpha.2020.03.009.

A. Cori, N. M. Ferguson, C. Fraser, and S. Cauchemez, “A new framework and software for estimating time-varying reproduction numbers during epidemics,” I. J. Epidemioles., vol. 178, no. 9, p. 1505–1512, 2013, doi: 10.1093/aje/kwt133.

J. Fantini, C. Di Scala, H. Chahinian, and N. Yahi, “Structural and molecular modeling studies reveal new mechanisms of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection,” int. J. Antimicrobial. Agent, vol. 55, no. 5, p. 105960, 2020, doi: 10.1016/j.ijantimicag.2020.105960.

Full Text: PDF

DOI: 10.15408/inprime.v5i1.28873


  • There are currently no refbacks.