Social Network Analysis of Twitter Users on BTS Topic Using Degree Centrality, Betweenness Centrality, and Closeness Centrality

Siti Adniati, Irwansyah Irwansyah, Zata Yumni Awanis

Abstract


Abstract

Nowadays, a trademark is starting to be built through content on social media by involving influencers whose roles are increasingly needed in digital marketing. Hence, finding them on social media networks is an important thing. In brand recognition, BTS has a great influence where a brand they collaborate with gets an enthusiastic response from fans who participate in disseminating information and recommending it to others via Twitter. Therefore, this study aims to identify the potential influencer on the delivery of information on the topic of BTS on Twitter using social network analysis. Social network analysis applies the concept of graph theory where the potential influencer which is denoted by the central vertex is measured by measures of centrality, namely degree centrality, betweenness centrality, and closeness centrality. The result of the network consists of 649 vertices and 730 directed edges that form a disconnected and directed network with 67 weakly connected components. This study indicates that the influencers in the network can be fan accounts or fanbase accounts.

Keywords: BTS; centrality; central vertex; influencer; social network analysis; Twitter.

 

Abstrak

Dewasa ini, suatu merek dagang mulai dibangun  melalui konten di media sosial dengan melibatkan pemengaruh yang perannya semakin dibutuhkan pada pemasaran digital sehingga menemukan mereka di jaringan media sosial adalah suatu hal yang penting. Dalam pengenalan merek, BTS memberikan pengaruh yang besar dimana suatu merek yang berkolaborasi dengan mereka mendapat respon antusias dari penggemar yang ikut menyebarluaskan informasi dan merekomendasikannya kepada orang lain melalui Twitter. Oleh karena itu, penelitian ini bertujuan untuk mengidentifikasi pemengaruh potensial dalam penyampaian informasi pada topik BTS di Twitter menggunakan analisis jaringan sosial. Analisis jaringan sosial menerapkan konsep teori graf dimana simpul sentral diukur dengan ukuran sentralitas, yaitu sentralitas derajat, sentralitas keantaraan, dan sentralitas kedekatan. Diperoleh jaringan dengan 649 simpul dan 730 sisi berarah yang membentuk jaringan berarah tak terhubung yang terdiri atas 67 komponen terhubung lemah. Adapun hasil dari penelitian ini menunjukkan bahwa simpul sentral atau pemengaruh dalam jaringan dapat berupa akun personal dari pengemar (fan account) atau akun basis penggemar (fanbase).

Kata Kunci: analisis jaringan  sosial, BTS,  pemengaruh , sentralitas, simpul sentral, Twitter.

 

2020MSC: 05C90, 91D30.


Keywords


BTS; centrality; central vertex; influencer; social network analysis; Twitter.

References


K. K. Ganguly, “Influencer Marketing in Social Media Context,” Interdiscip. Res. Technol. Manag., vol. 9, no. June 2018, pp. 416–419, 2021, doi: 10.1201/9781003202240-65.

S. C. Sivek, “Notable Nodes: Identifying influencers with Network Analysis,” Medium. [Online]. Available: https://towardsdatascience.com/notable-nodes-identifying-influencers-with-network-analysis-2f51f1d8fec4

J. Scott, Social Network Analysis, Second. London: SAGE Publications, 2000. [Online]. Available: https://www.researchgate.net/publication/227062049_Social_Network_Analysis

W. Maharani, Adiwijaya, and A. A. Gozali, "Degree centrality and eigenvector centrality in Twitter," Proc. 2014 8th Int. Conf. Telecommun. Syst. Serv. Appl. TSSA 2014, pp. 10–14, 2015, doi: 10.1109/TSSA.2014.7065911.

F. Ramadhan, “Pemanfaatan Analisis Jaringan Sosial Dalam Penentuan Centrality Dalam Pengembangan Web Berita Online,” J. Comput. Inf. Syst. Ampera, vol. 1, no. 3, pp. 157–173, 2020, doi: 10.51519/journalcisa.v1i3.43.

S. N. Diana, “Identifikasi Pengguna Media Sosial Yang Berpengaruh Berdasarkan Graph Dengan Metode Social Network Analysis,” Institut Teknologi Sepuluh Nopember, 2017. [Online]. Available: http://repository.its.ac.id/47695/

A. M. Litterio, E. A. Nantes, J. M. Larrosa, and L. J. Gómez, “Marketing and social networks: a criterion for detecting opinion leaders,” Eur. J. Manag. Bus. Econ., vol. 26, no. 3, pp. 347–366, 2017, doi: 10.1108/ejmbe-10-2017-020.

S. Nurulain Mohd Rum, R. Yaakob, and L. Suriani Affendey, “Detecting Influencers in Social Media Using Social Network Analysis (SNA),” Int. J. Eng. Technol., vol. 7, no. 4.38, p. 950, 2018, doi: 10.14419/ijet.v7i4.38.27615.

E. Yan and Y. Ding, “Applying centrality measures to impact analysis: a coauthorship network analysis,” J. Am. Soc. Inf. Sci. Technol., vol. 60, no. 10, pp. 2107–2118, 2009, doi: 10.1002/asi.21128.

R. Recuero, G. Zago, and F. Soares, “Using Social Network Analysis and Social Capital to Identify User Roles on Polarized Political Conversations on Twitter,” Soc. Media Soc., vol. 5, no. 2, 2019, doi: 10.1177/2056305119848745.

S. D. I. Mau, I. Sembiring, and H. Purnomo, “Analisis Pengguna Media Sosial Terhadap Isu UU Cipta Kerja Menggunakan SNA dan Naive Bayes,” Build. Informatics, Technol. Sci., vol. 4, no. 1, pp. 149–155, 2022, doi: 10.47065/bits.v4i1.1610.

M. Habibi and P. W. Cahyo, “A Social Network Analysis: Identifying Influencers in The COVID-19 Vaccination Discussion on Twitter,” Compiler, vol. 10, no. 2, p. 99, 2021, doi: 10.28989/compiler.v10i2.1074.

E. Krisnawati, D. S. Wibowo, A. Susanto, R. W. Pratiwi, and D. Dairoh, “Penerapan Eigenvector Centrality Terkait Metode Social Network Analysis (SNA) dalam Program Vaksinasi Covid-19 di Twitter,” J. Inform. J. Pengemb. IT, vol. 7, no. 3, pp. 179–188, 2022, doi: 10.30591/jpit.v7i3.4622.

I. Antoniadis and A. Charmantzi, “Social network analysis and social capital in marketing: Theory and practical implementation,” Int. J. Technol. Mark., vol. 11, no. 3, pp. 344–359, 2016, doi: 10.1504/IJTMKT.2016.077387.

L. C. Freeman, “Centrality in social networks conceptual clarification,” Soc. Networks, vol. 1, no. 3, pp. 215–239, 1978, doi: 10.1016/0378-8733(78)90021-7.

F. Maclean, D. Jones, G. Carin-Levy, and H. Hunter, "Understanding Twitter," Br. J. Occup. Ther., vol. 76, no. 6, pp. 295–298, 2013, doi: 10.4276/030802213X13706169933021.

S. Jaffali, S. Jamoussi, N. Khelifi, and A. Ben Hamadou, “Survey on social networks data analysis,” Commun. Comput. Inf. Sci., vol. 1139 CCIS, no. February 2020, pp. 100–119, 2020, doi: 10.1007/978-3-030-37484-6_6.

T. Allgeyer, “The Importance of Twitter to Destination Marketing Organizations The Importance of Twitter to Destination Marketing Organizations,” University of South Carolina, 2019. [Online]. Available: https://scholarcommons.sc.edu/etd

L. Buczak, “These were the Most Retweeted and Liked Tweets of 2020,” Audacy. Accessed: Jul. 01, 2021. [Online]. Available: https://www.audacy.com/national/news/these-were-the-most-retweeted-and-liked-tweets-of-2020

N. M. Santika Krisna Diari and L. P. Mahyuni, “Strategi Sukses K-Pop Memasuki Pasar Musik Mainstream: Bighit Entertainment, BTS, dan ‘Army,’” J. Manaj. Bisnis, vol. 16, no. 3, p. 31, 2019, doi: 10.38043/jmb.v16i3.2231.

Y. Kim, “#BTS_Dynamite Ranks No. 1 on Billboard Hot 100 46M Tweets in 3 Days!,” Twitter Blog. [Online]. Available: https://blog.twitter.com/en_sea/topics/events/2020/bts-dynamiteranks-no1-on-billboard-hot-100-46m-tweets-in-3-days

H. Endriana, “Konser BTS di Seoul akan Tayang Real Time di CGV Jakarta, Bandung, dan Surabaya,” SindoNews. Accessed: Feb. 24, 2023. [Online]. Available: https://gensindo.sindonews.com/read/695577/700/konser-bts-di-seoul-akantayang-real-time-di-cgv-jakarta-bandung-dan-surabaya-1645689771

Virginia and L. Wijaya Sinatra, “Analisis Aisas Model Terhadap ‘ Bts Effect ’ Sebagai,” J. Komun., vol. 11, no. 30, 2020.

I. M. Nurcahya, “Analisis Jejaring Sosial Dengan Graf Berarah Dan Berbobot Pada Pt Produk Rekreasi (Kids Fun) Bagian Operator,” Universitas Negeri Yogyakarta, 2016.

F. Anwar, “Perubahan dan Permasalahan Media Sosial,” J. Muara Ilmu Sos. Humaniora, dan Seni, vol. 1, no. 1, p. 137, 2017, doi: 10.24912/jmishumsen.v1i1.343.

R. Hanneman and M. Riddle, Introduction to Social Network Methods. 2023. [Online]. Available: https://math.libretexts.org/Bookshelves/Scientific_Computing_Simulations_and_Modeling/Book%3A_Introduction_to_Social_Network_Methods_(Hanneman)

P. R. Pavita, “Pemanfaatan Situs Jejaring Sosial Untuk Jual-Beli Fanwork Dalam Fandom: Studi Terhadap Prosumer Dalam Fandom Di Twitter,” Komunikologi J. Ilm. Ilmu Komun., vol. 18, no. 2, pp. 160–172, 2021.


Full Text: PDF

DOI: 10.15408/inprime.v5i2.28722

Refbacks

  • There are currently no refbacks.