Moving Horizon State Estimation for Linear System with Application to Autonomous Vehicle
Abstract
This paper proposes moving horizon estimation (MHE) to estimate the state variables of autonomous vehicle linear systems under measurement noises. To solve the MHE optimization problem, quadratic programming is employed. The steering angle, yaw angle, and global position constraints of an autonomous vehicle are considered in the estimation design. According to the simulation results, it can be observed that although the longer MHE step can give better results compared to the shorter MHE step, the difference in the MHE step only slightly affects the estimated results. However, the longer MHE step can increase the computational time. Additionally, the proposed MHE scheme is compared to the Kalman filter (KF) estimator. Based on the obtained results, the KF gives a better estimation than the MHE, but this notion must be verified for other case studies.
Keywords: autonomous vehicle; Kalman filter; linear system; MHE; quadratic programming.
Abstrak
Paper ini mengusulkan moving horizon estimation (MHE) untuk mengestimasi variabel keadaan sistem linier kendaraan otonom karena pengaruh noise pengukuran. Untuk menyelesaikan masalah optimasi MHE, digunakan pemrograman kuadratik. Kendala sudut kemudi, sudut yaw dan posisi global dari kendaraan otonom dipertimbangkan dalam desain estimasi. Dari hasil simulasi dapat diketahui bahwa meskipun langkah MHE yang lebih panjang dapat memberikan hasil yang lebih baik dibandingkan dengan langkah MHE yang lebih pendek, perbedaan langkah MHE hanya sedikit mempengaruhi hasil estimasi. Namun, langkah MHE yang semakin panjang dapat meningkatkan waktu komputasi. Selain itu, skema MHE yang diusulkan dibandingkan dengan estimator Kalman filter (KF). Berdasarkan hasil yang diperoleh, KF memberikan estimasi yang lebih baik daripada MHE, tetapi gagasan ini harus diverifikasi untuk studi kasus lainnya.
Kata Kunci: kendaraan otonom; Kalman filter; sistem linier; MHE; pemrograman kuadratik.
2020MSC: 62P35, 65D19
Keywords
References
M. Park, S. Lee, and W. Han, “Development of Steering Control System for Autonomous Vehicle Using Geometry-Based Path Tracking Algorithm,” ETRI J., vol. 37, no. 3, pp. 617–625, 2015, doi: 10.4218/etrij.15.0114.0123.
M. W. Mehrez, G. K. Mann, and R. G. Gosine, “Nonlinear Moving Horizon State Estimation for Multi-Robot Relative Localization,” IEEE 27th Can. Conf. Electr. Comput. Eng., 2014, doi: 10.1109/CCECE.2014.6901134.
S. A. Talla Ouambo, A. T. Boum, and A. Moukengue Imano, “Parameters and States Estimation by Moving Horizon Estimation, High Gain Observer and Unscented Kalman Filter of a Doubly-Fed Induction Generator Driven by Wind Turbine: A Comparative Study.,” J. Eng. Sci. & Technol. Rev., vol. 11, no. 2, 2018.
R. Alexander, G. Campani, S. Dinh, and F. V Lima, “Challenges and opportunities on nonlinear state estimation of chemical and biochemical processes,” Processes, vol. 8, no. 11, p. 1462, 2020.
X. Li, A. J. Cheng, and H. X. Lin, “Sample Regenerating Particle Filter Combined With Unequal Weight Ensemble Kalman Filter for Nonlinear Systems,” IEEE Access, vol. 9, pp. 109612–109623, 2021.
H. Purnawan, U. Ilmi, R. A. Faroh, and A. B. A. A. Rizqi, “Positioning Estimation of Autonomous Car using Extended Kalman Filter,” 1st ICEHST 2022, vol. 1, no. 02, pp. 1–8, 2022.
H. Joachim Ferreau, T. Kraus, M. Vukov, W. Saeys, and M. Diehl, “High-Speed Moving Horizon Estimation based on Automatic Code Generation,” in 51st IEEE Conference on Decision and Control, pp. 687–692, 2012.
C. V. Rao and J. B. Rawlings, “Nonlinear Moving Horizon State Estimation,” in Nonlinear Model Predictive Control, Springer, pp. 45–69, 2000.
R. Kandepu, L. Imsland, and B. A. Foss, “Constrained State Estimation Using the Unscented Kalman Filter,” in 16th Mediterranean Conference on Control and Automation, pp. 1453–1458, 2008.
B. Houska, H. J. Ferreau, and M. Diehl, “ACADO Toolkit - An Open Source Framework for Automatic Control and Dynamic Optimization,” Optim. Control Appl. Methods, vol. 32, no. 3, pp. 298–312, 2011.
W. Zhang, Z. Wang, C. Zou, L. Drugge, and M. Nybacka, “Advanced vehicle state monitoring: Evaluating moving horizon estimators and unscented Kalman filter,” IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 5430–5442, 2019.
H. Liu, P. Wang, J. Lin, H. Ding, H. Chen, and F. Xu, “Real-time longitudinal and lateral state estimation of preceding vehicle based on moving horizon estimation,” IEEE Trans. Veh. Technol., vol. 70, no. 9, pp. 8755–8768, 2021.
D. Mori and Y. Hattori, “Simultaneous estimation of vehicle position and data delays using gaussian process based moving horizon estimation,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2303–2308, 2020.
M. Gulan, M. Salaj, M. Abdollahpouri, and B. Rohal-Ilkiv, “Real-Time MHE-based Nonlinear MPC of A Pendubot System,” IFAC-PapersOnLine, vol. 48, no. 23, pp. 422–427, 2015.
S. A. P. Quintero, D. A. Copp, and P. Hespanha, “Robust UAV Coordination for Target Tracking using Output-Feedback Model Predictive Control with Moving Horizon Estimation,” pp. 3758–3764, 2015.
T. Kraus et al., “Moving Horizon Estimation and Nonlinear Model Predictive Control for Autonomous Agricultural Vehicles,” Comput. Electron. Agric., vol. 98, pp. 25–33, 2013, doi: 10.1016/j.compag.2013.06.009.
D. A. Allan and B. R. James, “Moving Horizon Estimation,” in Handbook of Model Predictive Control, Birkhäuser, Cham, pp. 99–124, 2019.
J. D. Hedengren, R. A. Shishavan, K. M. Powell, and T. F. Edgar, “Nonlinear Modeling, Estimation and Predictive Control in APMonitor,” Computers & Chemical Engineering, 2014.
N. Hashemian and A. Armaou, “Fast Moving Horizon Estimation of Nonlinear Processes via Carleman Linearization,” pp. 3379–3385, 2015.
M. S. Bazaraa, D. S. Hanif, and M. S. Chitharanjan, Nonlinear Programming: Theory and Algorithms. John Wiley & Sons, 2013.
I. The Mathworks, “MATLAB version 9.10.0.1739362 (R2021a),” 2021.
U. Melda, “Designing an MPC Controller with Simulink,” MATLAB Central File Exchange. Retrieved July 27, 2022.
DOI: 10.15408/inprime.v5i1.28313
Refbacks
- There are currently no refbacks.