Model and Simulation of COVID-19 Transmission with Vaccination and Quarantine Interventions in Jember

Faizal Rifky Fahreza, Moh. Hasan, Kusbudiono Kusbudiono

Abstract


Abstract

In this study, we model the transmission of COVID-19 by considering vaccination and quarantine interventions. The focus of our study is to measure the effect of these two interventions on controlling the spread of COVID-19. We demonstrate the use of the Kermack-McKendrik model as an SIR model for the number of people infected with COVID-19 applied in Jember, Indonesia. The model parameters are estimated using the Levenberg-Marquardt approach and the model equations are solved using the Runge-Kutta 4th-order method. Through the simulation study, we can determine the peak of the spread of COVID-19 cases and obtain several parameters related to vaccination and quarantine interventions that significantly affected the transmission rate of COVID-19. It is found that a faster rate of vaccinations will reduce the rate of transmission of COVID-19. Moreover, COVID-19 can be fully controlled if the infected patients carry out proper quarantine procedures.

Keywords: COVID-19; Kermack-McKendrik; Levenberg-Marquardt; quarantine; SIR; vaccination.

 

Abstrak

Dalam penelitian ini, kami memodelkan penularan COVID-19 dengan mempertimbangkan intervensi vaksinasi dan karantina. Fokus dari penelitian kami adalah untuk mengukur pengaruh dari kedua intervensi tersebut dalam mengontrol penyebaran COVID-19. Kami mendemonstrasikan penggunaan model Kermack-McKendrik sebagai model SIR untuk kasus pasien yang terinfeksi COVID-19 di Jember, Indonesia. Parameter model diestimasi menggunakan pendekatan Levenberg-Marquardt dan menyelesaikan model menggunakan metode orde-4 Runge-Kutta. Melalui studi simulasi, kami dapat menentukan waktu puncak penyebaran kasus COVID-19 dan mendapatkan beberapa parameter terkait intervensi vaksinasi dan karantina yang berpengaruh signifikan terhadap laju penularan COVID-19. Hasil simulasi menunjukan bahwa laju vaksinansi yang cepat akan mengurangi laju penyebaran COVID-19. Selain itu, COVID-19 dapat dikontrol dengan penuh jika pasien melakukan prosedur karantina yang tepat.

Kata Kunci: COVID-19; Kermack-McKendrik; Levenberg-Marquardt; karantina; vaksinasi.

 

2020MSC: 00A71, 92B05

Keywords


COVID-19; Kermack-McKendrik; Levenberg-Marquardt; quarantine; SIR; vaccination

References


A. Susilo, M. Rumende, C. W. Pitoyo, W. D. Santoso, M. Yulianti, Herikurniawan, R. Sinto, G. Singh, L. Nainggolan, E. J. Nelwan, L. K. Chen, A. Widhani, E. Wijaya, B. Wicaksana, M. Maradewi, F. Annisa, C. O. Jasirwan and E. Yunihastuti, "Coronavirus Disease 2019: Review of Current Litertures," Jurnal Penyakit Dalam Indonesia, vol. 7, pp. 45-67, 2020.

N. Zhu et al., "A novel coronavirus from patients with pneumonia in China, 2019," N Engl. J. Med, vol. 382, no. 8, p. 727–733, 2020.

WHO, “Transmission of SARS-CoV-2: implications for infection prevention precautions,” World Health Organization, 2020.

L. Zhang, J. Huang, H. Yu, X. Liu, Y. Wei, X. Lian, C. Liu and Z. Jing, "Optimal parameterization of COVID-19 epidemic models," Atmospheric and Oceanic Science Letters, 2020. doi: https://doi.org/10.1016/j.aosl.2020.100024.

Y. Yulida and M. A. Karim, "PEMODELAN MATEMATIKA PENYEBARAN COVID-19 DI PROVINSI KALIMANTAN SELATAN," Media Bina Ilmiah, vol. 14, pp. 3257-3264, 2020.

A. A. Gebremeskel, H. W. Berhe and H. A. Atsbaha, "Mathematical modelling and analysis of COVID-19 epidemic and predicting its future situation in Ethiopia," Results in Physics, vol. 22, 2021.

S. Tyagi, S. C. Martha, S. Abbas and A. Debbouche, "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons and Fractals, vol. 144, 2021.

M. Y. Li, An Introduction to Mathematical Modeling of Infectious Diseases, Canada: Springer Nature, 2018.

H. Trottier and P. Philippe, "Deterministic Modeling Of Infectious Diseases: Theory And Methods," The Internet Journal of Infectious Diseases, vol. 1, 2000.

D. Aldila and D. Asrianti, "A deterministic model of measles with imperfect vaccination and quarantine intervention," Journal of Physics: Conference Series, 2019.

M. Zevika, A. Triska, N. Nuraini and G. Lahodny Jr, "On The Study of Covid-19 Transmission Using Deterministic and Stochastic Models with Vaccination Treatment and Quarantine," Communication in Biomathematical Sciences, vol. 5, no. 1, pp. 1-19, 2022.

K. Madsen, H. B. Nielsen and O. Tingleff, Methods for Non-Linear Least Squares Problems, 2nd ed., Denmark: Technical University of Denmark, 2004.

M. Umar, Z. Sabir, M. A. Z. Raja, M. Gupta, D.-N. Le, A. A. Aly and Y. Guerrero-Sánchez, "Computational Intelligent Paradigms to Solve the Nonlinear SIR System for Spreading Infection and Treatment using Levenberg–Marquardt Backpropagation," Symmetry , vol. 13, no. 618, p. sym13040618, 2021.

C. T. Kelley, Iterative Methods for Optimization, Philadelphia: SIAM Frontiers in Applied Mathematics, 1999.

F. Brauer, P. v. d. Driessche and J. Wu, Mathematical Epidemiology, Berlin: Springer, 2008.

M. Martcheva, An Introduction to Mathematical Epidemiology, New York: Springer, 2015.

P. J. Olver and C. Shakiban, Applied Linear Algebra, 2nd ed., Cham: Springer, 2018.

A. Iserles, A First Course in the Numerical Analysis of Differential Equations, 2nd ed., New York: Cambridge University Press, 2009.

J. C. Butcher, Numerical Methods for Ordinary Differential Equations, 2nd ed., Chichester: John Wiley & Sons Ltd, 2008.

Y. Mao, W. Wang, J. Ma, S. Wu and F. Sun, "Reinfection rates among patients previously infected by SARS-CoV-2: systematic review and meta-analysis," Chinese Medical Journal, vol. 135, pp. 145-152, 2022.


Full Text: PDF

DOI: 10.15408/inprime.v5i1.27192

Refbacks

  • There are currently no refbacks.