The Modular Irregularity Strength of C_n⊙mK_1

Putu Kartika Dewi

Abstract


Let G(V, E) be a graph with order n with no component of order 2. An edge k-labeling α: E(G) →{1,2,…,k} is called a modular irregular k-labeling of graph G if the corresponding modular weight function wt_ α:V(G) → Z_n defined by wt_ α(x) =Ʃ_(xyϵE(G)) α(xy) is bijective. The value wt_α(x) is called the modular weight of vertex x. Minimum k such that G has a modular irregular k-labeling is called the modular irregularity strength of graph G. In this paper, we define a modular irregular labeling on C_n⊙mK_1. Furthermore, we determine the modular irregularity strength of C_n⊙mK_1.

Keywords: corona product; cycle; empty graph; modular irregular labeling; modular irregularity strength.

 

Abstrak

Diberikan graf G(V, E) dengan orde n dengan tidak ada komponen yang berorde 2. Sebuah pelabelan-k sisi α: E(G) →{1,2,…,k} disebut pelabelan-k tak teratur modular pada graf G jika fungsi bobot modularnya wt_ α:V(G) → Z_n dengan wt_ α(x) =Ʃ_(xyϵE(G)) α(xy) merupakan fungsi bijektif. Nilai wt_α(x) disebut bobot modular dari simpul x. Minimum dari k sehingga G mempunyai pelabelan-k tak teratur modular disebut dengan kekuatan ketakteraturan modular dari graf G. Pada tulisan ini, didefinisikan pelabelan tak teratur modular pada C_n⊙mK_1. Lebih lanjut, ditentukan kekuatan ketakteraturan modular dari C_n⊙mK_1.

Kata Kunci: hasil kali korona; lingkaran, graf kosong; pelabelan tak teratur modular; kekuatan ketakteraturan modular.


Keywords


corona product; cycle; empty graph; modular irregular labeling; modular irregularity strength.

References


J. A. Galian, “A dynamic survey of graph labeling,” The Electronic Journal of Combinatorics, vol. #DS6, 2020.

G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz, and F. Saba, “Irregular networks,” In Congr. Numer, vol. 64, pp. 197–210, 1988.

M. Kalkowski, M. Karoński, and F. Pfender, “A new upper bound for the irregularity strength of graphs,” SIAM J Discret Math, vol. 25, no. 3, pp. 1319–1321, Jan. 2011, doi: 10.1137/090774112.

Nurdin, “Irregular assignment of series parallel networks,” J Phys Conf Ser, vol. 979, p. 012070, Mar. 2018, doi: 10.1088/1742-6596/979/1/012070.

M. Anholcer and C. Palmer, “Irregular labelings of circulant graphs,” Discrete Math, vol. 312, no. 23, pp. 3461–3466, Dec. 2012, doi: 10.1016/j.disc.2012.06.017.

P. Majerski and J. Przybyło, “On the irregularity strength of dense graphs,” SIAM J Discret Math, vol. 28, no. 1, pp. 197–205, Jan. 2014, doi: 10.1137/120886650.

A. Ahmad, O. B. S. Al-Mushayt, and M. Bača, “On edge irregularity strength of graphs,” Appl Math Comput, vol. 243, pp. 607–610, Sep. 2014, doi: 10.1016/j.amc.2014.06.028.

I. Tarawneh, R. Hasni, and A. Ahmad, “On the edge irregularity strength of corona product of cycle with isolated vertices,” AKCE International Journal of Graphs and Combinatorics, vol. 13, no. 3, pp. 213–217, Dec. 2016, doi: 10.1016/j.akcej.2016.06.010.

M. Imran, A. Aslam, S. Zafar, and W. Nazeer, “Further results on edge irregularity strength of graphs,” Indonesian Journal of Combinatorics, vol. 1, no. 2, p. 36, Aug. 2017, doi: 10.19184/ijc.2017.1.2.5.

A. Ahmad, M. Bača, and M. F. Nadeem, “On edge irregularity strength of Toeplitz graphs,” U.P.B. Sci. Bull., Series A, vol. 78, 2016.

L. Ratnasari and Y. Susanti, “Total edge irregularity strength of ladder-related graphs,” Asian-European Journal of Mathematics, vol. 13, no. 04, p. 2050072, Jun. 2020, doi: 10.1142/S1793557120500722.

P. Jeyanthi and A. Sudha, “Total edge irregularity strength of disjoint union of wheel graphs,” Electron Notes Discrete Math, vol. 48, pp. 175–182, Jul. 2015, doi: 10.1016/j.endm.2015.05.026.

N. Hinding, N. Suardi, and H. Basir, “Total edge irregularity strength of subdivision of star,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 18, no. 6, pp. 869–875, Nov. 2015, doi: 10.1080/09720529.2015.1032716.

I. Rajasingh and S. T. Arockiamary, “Total edge irregularity strength of series parallel graphs,” International Journal of Pure and Apllied Mathematics, vol. 99, no. 1, Feb. 2015, doi: 10.12732/ijpam.v99i1.2.

R. W. Putra and Y. Susanti, “On total edge irregularity strength of centralized uniform theta graphs,” AKCE International Journal of Graphs and Combinatorics, vol. 15, no. 1, pp. 7–13, Apr. 2018, doi: 10.1016/j.akcej.2018.02.002.

D. Indriati, I. E. W. Widodo, K. A. Sugeng, and M. Bača, “On total edge irregularity strength of generalized web graphs and related graphs,” Mathematics in Computer Science, vol. 9, no. 2, pp. 161–167, Jun. 2015, doi: 10.1007/s11786-015-0221-5.

M. Bača and M. K. Siddiqui, “Total edge irregularity strength of generalized prism,” Appl Math Comput, vol. 235, pp. 168–173, May 2014, doi: 10.1016/j.amc.2014.03.001.

D. Indriati, I. E. W. Widodo, and K. A. Sugeng, “On the total edge irregularity strength of generalized helm,” AKCE International Journal of Graphs and Combinatorics, vol. 10, no. 2, pp. 147–155, 2013.

P. Jeyanthi and A. Sudha, “Total vertex irregularity strength of corona product of some graphs,” Journal of Algorithms and Computation, vol. 48, no. 1, pp. 127–140, 2016.

M. Imran, A. Ahmad, M. K. Siddiqui, and T. Mehmood, “Total vertex irregularity strength of generalized prism graphs,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 25, no. 6, pp. 1855–1865, Aug. 2022, doi: 10.1080/09720529.2020.1848103.

A. Ahmad, M. Bača, and Y. Bashir, “Total vertex irregularity strength of certain classes of unicyclic graphs,” Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie, pp. 147–152, Jan. 2014.

P. Majerski and J. Przybyło, “Total vertex irregularity strength of dense graphs,” J Graph Theory, vol. 76, no. 1, pp. 34–41, May 2014, doi: 10.1002/jgt.21748.

M. Bača, K. Muthugurupackiam, K. M. Kathiresan, and S. Ramya, “Modular irregularity strength of graphs,” Electronic Journal of Graph Theory and Applications, vol. 8, no. 2, pp. 435–443, 2020, doi: 10.5614/ejgta.2020.8.2.19.

K. W. Prasancika, “Kekuatan ketidakteraturan modular beberapa graf padat (english translation: The modular irregularity strength of some dense graphs),” Undergraduated Thesis, Universitas Pendidikan Ganesha, Singaraja, 2021.

M. I. Tilukay, “Modular irregularity strength of triangular book graph,” Nov. 2021, Accessed: Jul. 23, 2022. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/2111/2111.12897.pdf

K. A. Sugeng, Z. Z. Barack, N. Hinding, and R. Simanjuntak, “Modular irregular labeling on double-star and friendship graphs,” Journal of Mathematics, vol. 2021, pp. 1–6, Dec. 2021, doi: 10.1155/2021/4746609.

N. Hinding, K. A. Sugeng, . N., T. J. Wahyudi, and R. Simanjuntak, “Two types irregular labelling on dodecahedral modified generalization graph,” SSRN Electronic Journal, 2021, doi: 10.2139/ssrn.3968029.

K. Muthugurupackiam and S. Ramya, “Modular irregularity strength of two classes of graphs,” Journal of Computer and Mathematical Sciences, vol. 9, no. 9, pp. 1132–1141, 2018.

M. Bača, M. Imran, and A. Semaničová-Feňovčíková, “Irregularity and modular irregularity strength of wheels,” Mathematics, vol. 9, no. 21, Nov. 2021, doi: 10.3390/math9212710.

M. Bača, Z. Kimáková, M. Lascsáková, and A. Semaničová-Feňovčíková, “The irregularity and modular irregularity strength of fan graphs,” Symmetry (Basel), vol. 13, no. 4, p. 605, Apr. 2021, doi: 10.3390/sym13040605.

F. A. N. J. Apituley, M. W. Talakua, and Y. A. Lesnussa, “On the irregularity strength and modular irregularity strength of friendship graphs and its disjoint union,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 3, pp. 869–876, Sep. 2022, doi: 10.30598/barekengvol16iss3pp869-876.

K. Muthugurupackiam and S. Ramya, “Modular labelings on some classes of graphs,” Aryabhatta Journal of Mathematics & Informatics, vol. 12, no. 2, pp. 165–172, 2020.

K. Muthugurupackiam, T. Manimaran, and A. Thuraiswamy, “Irregularity strength of corona of two graphs,” Lecture Notes in Comput. Sci., pp. 175–181, 2017.


Full Text: PDF

DOI: 10.15408/inprime.v4i2.26935

Refbacks

  • There are currently no refbacks.