A Study on the Estimator Distribution for the Expected Value of a Compound Periodic Poisson Process with Power Function Trend

Nurul Indah Safitri, I Wayan Mangku, Hadi Sumarno

Abstract


This article discusses the estimation for the expected value, also called the mean function, of a compound periodic Poisson process with a power function trend. The aims of our study are, first, to modify the existing estimator to produce a new estimator that is normally distributed, and, second, to determine the smallest observation interval size such that our proposed estimator is still normally distributed. Basically, we formulate the estimator using the moment method. We use Monte Carlo simulation to check the distribution of our new estimator. The result shows that a new estimator for the expected value of a compound periodic Poisson process with a power function trend is normally distributed and the simulation result shows that the distribution of the new estimator is already normally distributed at the length of 100 observation interval for a period of 1 unit. This interval is the smallest size of the observation interval. The Anderson-Darling test shows that when the period is getting larger, the p-value is also getting bigger. Therefore, the larger period requires a wider observation interval to ensure that the estimator still has a normal distribution.

Keywords: moment method; normal distribution; Poisson process; the smallest observation interval.

 

Abstrak

Pada artikel ini dibahas tentang pendugaan fungsi nilai harapan Proses Poisson periodik majemuk dengan tren fungsi pangkat. Tujuan penelitian kami adalah, pertama, memodifikasi penduga yang telah ada untuk menghasilkan penduga baru yang memiliki distribusi normal. Kedua, menentukan ukuran interval pengamatan terkecil sehingga penduga yang diusulkan masih berdistribusi normal. Pada dasarnya, penduga yang kami usulkan diformulasi menggunakan metode momen. Kami menggunakan metode simulasi Monte Carlo untuk memeriksa sebaran distribusinya. Hasil menunjukkan bahwa penduga yang baru untuk fungsi nilai harapan Proses Poisson periodik majemuk dengan tren fungsi pangkat memiliki distribusi normal. Hasil simulasi menunjukkan bahwa penduga baru telah berdistribusi normal pada panjang interval pengamatan 100 untuk periode sebesar 1 satuan. Interval pengamatan ini merupakan ukuran interval pengamatan terkecil. Selain itu, hasil uji Anderson-Darling menunjukkan bahwa ketika periode semakin besar maka p-value juga semakin besar. Oleh karena itu, periode yang lebih besar memerlukan interval pengamatan yang lebih panjang untuk menjamin penduga yang kami usulkan tetap berdistribusi normal.

Kata Kunci: metode momen; distribusi normal; proses Poisson; interval pengamatan terkecil.

 

2020MSC: 62E17 


Keywords


moment method; normal distribution; Poisson process; the smallest observation interval.

References


Ruhiyat, I. W. Mangku and ,. I. G. P. Purnaba, "Consistent estimation of the mean function of a compound cyclic Poisson process," Far East Journal of Mathematical Science, vol. 77, pp. 183-194, 2013.

I. W. Mangku, Ruhiyat and I. G. P. Purnaba, "Statistical properties of an estimator for the mean function of a compound cyclic Poisson process," Far East Journal of Mathematical Science, vol. 82, pp. 227-237, 2013.

I. W. Mangku, F. Sakinah and Ruhiyat, "Estimating the mean and variance function of a compound Poisson process having power function intensity," Far East Journal of Mathematical Sciences, vol. 100, pp. 1455-1465, 2016.

I. F. Sari, I. W. Mangku and H. Sumarno, "Estimating the mean function of a compound cyclic Poisson process in the presence of power function trend," Far East Journal of Mathematical Sciences, vol. 100, pp. 1825-1840, 2016.

B. A. Wibowo, I. W. Mangku and Siswadi, "Statistical properties of an estimator for the mean function of a compound cyclic Poisson process in the presence of linear trend," Arab Journal of Mathematical Sciences, vol. 23, pp. 173-185, 2017.

I. M. Y. E. Prasetya, I. W. Mangku and H. Sumarno, "Estimating the mean and variance of a compound Poisson process with the Poisson intensity obtained as exponential of the linear function," Far East Journal of Mathematical Sciences, vol. 102, pp. 721-729, 2017.

F. I. Makhmudah , I. W. Mangku and H. Sumarno, "Estimating the variance function of a compound cyclic Poisson process," Far East Journal of Mathematical Sciences, vol. 100, pp. 911-922, 2016.

S. Abdullah , I. W. Mangku and Siswadi, "Estimating the variance function of a compound cyclic Poisson process in the presence of linear trend," Far East Journal of Mathematical Sciences, vol. 102, pp. 559-572, 2017.

M. W. Utama, I. W. Mangku and B. P. Silalahi, "Asymptotic distribution of an estimator for variance function of a compound periodic Poisson process with power function trend," Jurnal Teori dan Aplikasi Matematika, vol. 6, no. 4, pp. 1081-1095, 2022. doi:https://doi.org/10.31764/jtam.v6i4.10213.

N. Valentika, I. W. Mangku and W. Erliana, "Strong consistency and asymptotic distribution of estimator for the intensity function having form of periodic function multipled by power function trend of a Poisson process," International Journal of Engineering and Management Research, vol. 8, no. 2, pp. 232-236, 2018.

W. Erliana , I. W. Mangku and H. Sumarno, "Estimating the intensity obtained as the product of a periodic function with the power function trend of a non-homogeneous Poisson process," Far East Journal of Mathematical Science, vol. 90, pp. 163-172, 2014.

I. Maulidi, I. W. Mangku and H. Sumarno, "Strong consistency of a kernel-type estimator for the intensity obtained as the product of a periodic function with the power function trend of a non-homogeneous Poisson process," British Journal of Applied Science and Technology, Vols. 383-387, p. 9, 2015.

I. Maulidi, M. Ihsan and V. Apriliani, "The numerical simulation for asymptotic normality of the intensity obtained as a product of a periodic function with the power trend function of a nonhomogeneous Poisson process," Desimal: Jurnal Matematika, vol. 3, no. 271-278, p. 3, 2020.

I. W. Mangku, "Estimating the intensity of a cyclic Poisson process in the presence of additive and multiplicative trends," Journal of Physics: Conference Series 893 (1), 012023, 2017.

I. Maulidi, W. A. B., N. Valentika, M. Syazali and V. Apriliani, "The confidence interval for the periodic intensity function in the presence of power function trend on the nonhomogeneous Poisson process," CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 7, no. 1, pp. 78-83, 2021. doi: http://dx.doi.org/10.18860/ca.v7i1.12848.

S. Abdullah, S. Susilo, I. W. Mangku, F. Ikhsan, S. Ula and Y. Rukmayadi, "Algorithm for generating compound Poisson process which has nonhomogeneous Poisson process and exponential distribution components," in The 1st International Multidisciplinary Conference on Education, Technology, and Engineering (IMCETE), 2020. doi: 10.2991/assehr.k.200303.059.

A. Fithry, I. W. Mangku and I. G. P. Purnaba, "Interval Kepercayaan untuk Fungsi Nilai Harapan dan Fungsi Ragam Proses Poisson Periodik Majemuk," Jambura J. Math, vol. 4, no. 1, p. 152–166, 2022. https://doi.org/10.34312/jjom.v4i1.12180.

I. Maulidi, B. A. Wibowo, N. Valentika, M. Syazali and V. Apriliani, "Confidence intervals for the mean function of a compound cyclic Poisson process in the presence of power function trend," CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 7, no. 3, pp. 411-419, 2022.

P. Kruczek, M. Polak, A. Wylomanska, W. Kawalec and R. Zimroz, "Application of compound Poisson process for modelling of ore flow in a belt conveyor system with cyclic loading," International Journal of Mining, Reclamation and Environment, vol. 32, no. 6, pp. 376-391, 2018. http://dx.doi.org/10.1080/17480930.2017.1388335.

D. Munandar, S. Supian and Subiyanto, "Probability distributions of COVID-19 tweet posted trends uses a nonhomogeneous Poisson process," International Journal of Quantitative Research and Modeling, vol. 1, no. 4, pp. 119-238, 2020.

J. H. Sukono, R. A. Ibrahim, M. P. A. Saputra, Y. Hidayat and I. G. Prihanto, "Application of compound Poisson process in pricing catastrophe bonds: a systematic literature review," MDPI Journal, vol. 10, no. 15, p. 2668, 2022. doi:https://doi.org/10.3390/math10152668.


Full Text: PDF

DOI: 10.15408/inprime.v4i2.25104

Refbacks

  • There are currently no refbacks.