Uncoupled Two Agents Modeling Via Bilinear Optimal Control

R. Heru Tjahjana


In this paper, uncoupled two agents modeling is proposed using an optimal bilinear control approach. The model is proposed using assumptions: an absence of the multi agent leader, each agent cannot control the others, each agent never collides with the others, and each agent has the same properties. The special functional cost consisting of a repellent cost is considered. The Pontryagin Maximum Principle is used to determine the optimal path for each agent. After control and optimal path for each agent are obtained some of the simulation results are exposed in this paper.

Keywords: uncoupled agent; modeling; bilinear system.



Dalam penelitian ini, pemodelan dua agen yang tidak berpasangan disajikan dengan pendekatan kontrol optimal bilinear. Model yang diusulkan dalam paper ini ditulis dengan asumsi: tidak adanya pemimpin dalam sistem multi agen, setiap agen tidak dapat mengendalikan atau mempengaruhi agen yang lain, setiap agen tiak boleh bertabrakan satu sama lain, dan para agen mempunyai sifat-sifat yang identik. Fungsional biaya khusus yang membuat para agen tidak bertabrakan dipertimbangkan dalam penulisan paper ini. Prinsip maksimum Pontryagin digunakan dalam penentuan lintasan optimal dari para agen.  Beberapa hasil simulasi disajikan dalam paper ini.

Kata Kunci: agen tak berpasangan; pemodelan; sistem bilinear.


coupled agent; modeling; bilinear system


H. Liang, H. Zhang, Z. Wang, and J. Wang, “Output regulation of state-coupled linear multi-agent systems with globally reachable topologies,” Neurocomputing, vol. 123, 2014, doi: 10.1016/j.neucom.2013.07.028.

Y. Hu, X. Cai, and B. DuPont, “Design of a web-based application of the coupled multi-agent system model and environmental model for watershed management analysis using Hadoop,” Environ. Model. Softw., vol. 70, 2015, doi: 10.1016/j.envsoft.2015.04.011.

A. Nikou, D. Boskos, J. Tumova, and D. V. Dimarogonas, “On the timed temporal logic planning of coupled multi-agent systems,” Automatica, vol. 97, 2018, doi: 10.1016/j.automatica.2018.08.023.

S. Yuan, C. Zhao, and L. Guo, “Uncoupled PID Control of Coupled Multi-Agent Nonlinear Uncertain systems,” J. Syst. Sci. Complex., vol. 31, no. 1, 2018, doi: 10.1007/s11424-018-7335-1.

K. P. W. Kok et al., “Transforming research and innovation for sustainable food systems-A coupled-systems perspective,” Sustain., vol. 11, no. 24, 2019, doi: 10.3390/SU11247176.

A. Zada, S. Fatima, Z. Ali, J. Xu, and Y. Cui, “Stability results for a coupled system of impulsive fractional differential equations,” Mathematics, vol. 7, no. 10, 2019, doi: 10.3390/math7100927.

X. Xiao, Z. C. He, E. Li, and A. G. Cheng, “Design multi-stopband laminate acoustic metamaterials for structural-acoustic coupled system,” Mech. Syst. Signal Process., vol. 115, 2019, doi: 10.1016/j.ymssp.2018.06.004.

R. de Sousa and F. Minhós, “On coupled systems of Hammerstein integral equations,” Bound. Value Probl., vol. 2019, no. 1, 2019, doi: 10.1186/s13661-019-1122-3.

D. Boskos and D. V. Dimarogonas, “Decentralized abstractions for multi-agent systems under coupled constraints,” Eur. J. Control, vol. 45, 2019, doi: 10.1016/j.ejcon.2018.10.002.

L. Huber, N. Bahro, G. Leitinger, U. Tappeiner, and U. Strasser, “Agent-based modelling of a coupled water demand and supply system at the catchment scale,” Sustain., vol. 11, no. 21, 2019, doi: 10.3390/su11216178.

S. Jafarizadeh, F. Tofigh, J. Lipman, and M. Abolhasan, “Optimizing synchronizability in networks of coupled systems,” Automatica, vol. 112, 2020, doi: 10.1016/ j.automatica.2019.108711.

D. Boskos and D. V. Dimarogonas, “Finite horizon discrete models for multi-agent control systems with coupled dynamics,” Automatica, vol. 115, 2020, doi: 10.1016/j.automatica.2020.108838.

X. Zhang, H. Ma, and C. Zhang, “Decentralised adaptive synchronisation of a class of discrete-time and nonlinearly parametrised coupled multi-agent systems,” Int. J. Control, vol. 94, no. 2, 2021, doi: 10.1080/00207179.2019.1598577.

Y. Ge, X. Mei, H. Jiang, J. Qiu, and Z. Yu, “A novel method for distributed optimization with globally coupled constraints based on multi-agent systems,” Neurocomputing, 2021, doi: 10.1016/j.neucom.2021.11.014.

X. Li, X. Yi, and L. Xie, “Distributed Online Optimization for Multi-Agent Networks with Coupled Inequality Constraints,” IEEE Trans. Automat. Contr., vol. 66, no. 8, 2021, doi: 10.1109/TAC.2020.3021011.

Full Text: PDF

DOI: 10.15408/inprime.v4i1.24969


  • There are currently no refbacks.