Stability Analysis of Leslie-Gower Model with Herd Behavior on Prey

M. Adib Jauhari Dwi Putra, Ade Ima Afifa Himayati

Abstract


We studied the Leslie-Gower model of predator-prey with herd behavior. The square root functional response models predator and prey interactions that show herd behavior. This study aims to determine the formulation of the predator-prey model with herd behavior on prey, knowing the fixed points and its stability and simulating the model numerically. We found three fixed points that may exist: the extinction point of both species, the extinction of predator point, and the point of coexistence of the two species. The extinction of predator points is always unstable, while the point of coexistence of the two species can be stable under certain conditions. Due to the presence of square roots, the behavior of the solutions near the extinction point of the two species is not readily apparent. Numeric simulation shows that changing the initial condition and parameters can change the system's stability.

Keywords: predator-prey; functional response; herd behavior; square root functional response, Leslie-Gower model.

 

Abstrak

Artikel membahas model predator prey Leslie-Gower dengan perilaku bergerombol pada prey. Interaksi predator dan prey yang menunjukkan perilaku bergerombol dimodelkan dengan fungsi respon akar kuadrat. Penelitian ini bertujuan untuk mengetahui formulasi model predator-prey dengan perilaku bergerombol pada prey, mengetahui titik ekuilibrium dan kestabilannya serta menyimulasikan model tersebut secara numerik. Hasil menunjukkan terdapat tiga titik tetap yang mungkin eksis, yaitu titik kepunahan kedua spesies, titik kepunahan predator dan titik koeksistensi kedua spesies. Titik kepunahan predator selalu tidak stabil, sedangkan titik koeksistensi kedua spesies bisa stabil dengan syarat tertentu. Karena adanya akar kuadrat, perilaku solusi di dekat titik kepunahan kedua spesies tidak mudah terlihat. Simulasi numerik menunjukkan bahwa perubahan nilai awal dan parameter dapat mengubah kestabilan sistem.

Kata Kunci: predator prey; fungsi responsperilaku bergerombolfungsi respon akar kuadratmodel Leslie-Gower.


Keywords


predator-prey; functional response; herd behavior; square root functional response, Leslie-Gower model

References


W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, USA: John Willey and Sons, 2013.

N. Finizio and G. Ladas, An Introduction to Differential Equations, USA: Wadsworth, Inc., 1984.

J. D. Murray, Mathematical Biology, New York: Springer Verlag, 1989.

A. A. Shaikh, H. Das and N. Ali, "Study of a predator-prey model with modified Leslie–Gower and Holling type III schemes," Model. Earth Syst. Environ., vol. 4, no. 2, p. 527–533, 2018. doi: 10.1007/s40808-018-0441-1.

C. S. Holling, "Principles of insect predation," Ann. Rev. Entomol, vol. 6, pp. 163-182, 1961.

C. S. Holling, "The functional response of invertebrate predator to prey density," Mem. Ent. Soc. Can., vol. 45, p. 3–60., 1965.

S. Wang, Z. Xie, R. Zhong and Y. Wu, "Stochastic analysis of a predator–prey model with modified Leslie–Gower and Holling type II schemes," Nonlinear Dynamics, vol. 11, no. 2, 2020, doi: 10.1007/s11071-020-05803-3.

P. H. Leslie, "A Stochastic Model for Studying the Properties of Certain Biological Systems by Numerical Methods," Biometrika, vol. 45, no. 1/2, p. 16–31, 1958.

J. B. Collings, "The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model," J. Math. Biol., vol. 36, no. 2, p. 149–168, 1997, doi: 10.1007/s002850050095.

M. A. Aziz-Alaoui and M. D. Okiye, "Boundedness and Global Stability for a Predator-Prey Model with Modified Leslie-Gower and Holling-type II schemes," Applied Mathematics Letters, vol. 16, pp. 1069-1075, 2003.

V. Ajraldi, M. Pittavino and E. Venturino, "Modeling herd behavior in population systems," Nonlinear Anal. Real World Appl., vol. 12, no. 4, p. 2319–2338, 2011, doi: 10.1016/j.nonrwa.2011.02.002.

P. A. Braza, "Predator-prey dynamics with square root functional responses," Nonlinear Anal. Real World Appl., vol. 13, no. 4, p. 1837–1843, 2012, doi: 10.1016/j.nonrwa.2011.12.014.

R. M. May, Stability and complexity in model ecosystems, NJ: Princeton Univ. Press: Princeton, 1973.


Full Text: PDF

DOI: 10.15408/inprime.v4i1.24464

Refbacks

  • There are currently no refbacks.