Numerical Results of Crank-Nicolson and Implicit Schemes to Laplace Equation with Uniform and Non-Uniform Grids
Abstract
In this paper, we investigate the numerical results between Implicit and Crank-Nicolson method for Laplace equation. Based on the numerical results obtained, we get the conclusion that the absolute error of Crank-Nicolson method is smaller than the absolute error of Implicit method for uniform and non-uniform grids which both refer to the analytical solution of Laplace equation obtained by separable variable method.
Keywords: Crank-Nicolson; Implicit; Laplace equation; separable variable method; uniform and non-uniform grids.
Abstrak
Dalam makalah ini, kami menyelidiki hasil numerik antara etode Implisit dan Crank-Nicolson untuk persamaan Laplace. Berdasarkan hasil numerik yang diperoleh, kita mendapatkan kesimpulan bahwa kesalahan absolut metode Crank-Nicolson lebih kecil daripada kesalahan absolut metode Implisit untuk grid seragam dan tak-seragam yang keduanya mengacu pada solusi analitik persamaan Laplace yang diperoleh dengan metode separable.
Kata kunci: Crank-Nicolson; Implisit; persamaan Laplace; metode variable terpisah; grid seragam dan tak-seragam.
Keywords
References
C. H. Marchi, L. A. Novak, C. D. Santiago and A. P. da S. Vargas, "Highly accurate numerical solutions with repeated Richardson extrapolation for 2D laplace equation," Applied Mathematical Modelling, vol. 37, p. 7386–7397, 2013.
R. Rangogni , "Numerical solution of the generalized Laplace equation by coupling the boundary element method and the perturbation method," Applied Mathematical Modelling, vol. 10, p. 266–270, 1986.
R. Rangogni and R. Occhi, "Numerical solution of the generalized Laplace equation by the boundary element method," Applied Mathematical Modelling, vol. 11, p. 393–396, 1987.
T. Wei , Y. G. Chen and J. C. Liu, "A variational-type method of fundamental solutions for a Cauchy problem of Laplace’s equation," Applied Mathematical Modelling, vol. 37, p. 1039–1053, 2013.
C. L. Fu, Y. J. Ma, H. Cheng and Y. X. Zhang, "The a posteriori Fourier method for solving the Cauchy problem for the Laplace equation with nonhomogeneous Neumann data," Applied Mathematical Modelling, vol. 37, p. 7764–7777, 2013.
I. Shojaei , H. Rahami and A. Kaveh, "A numerical solution for Laplace and Poisson’s equations using geometrical transformation and graph products," Applied Mathematical Modelling, vol. 40, p. 7768–7783, 2016.
L. Bourgeois , "A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace’s Equation," Inverse Probl. , vol. 21, p. 1087–1104., 2005.
L. Bourgeois, "Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace’s equation," Inverse Probl., vol. 22, p. 413– 430, 2006.
H. Cao , M. V. Klibanov and S. V. Pereverzev, "A Carleman estimate and the balancing principle in the quasi-reversibility method for solving the Cauchy problem for the Laplace equation," Inverse Probl., vol. 25, no. 035005, 2009.
M. V. Klibanov and F. Santosa, "A computational quasi-reversibility method for Cauchy problems for Laplace’s equation," SIAM J. Appl. Math., vol. 51, p. 1653–1675, 1991.
Y. C. Hon and T. Wei , "Backus–Gilbert algorithm for the Cauchy problem of the Laplace equation," Inverse Probl., vol. 17, p. 261–271, 2001.
T. Takeuchi and M. Yamamoto, "Tikhonov regularization by a reproducing kernel Hilbert space for the Cauchy problem for an elliptic equation," SIAM J. Sci. Comput., vol. 31, p. 112–142, 2008.
R. S. Falk and P. B. Monk , "Logarithmic convexity for discrete harmonic functions and the approximation of the Cauchy problem for Poisson’s Equation," Math. Comput., vol. 47, p. 135–149, 1986.
H. J. Reinhardt , H. Han and D. N. Hào, "Stability and regularization of a discrete approximation to the Cauchy problem for Laplace’s equation," SIAM J. Numer. Anal., vol. 36, p. 890–905, 1999.
F. B. Belgacem, D. T. Du and F. Jelassi , "Extended-domain-Lavrentiev’s Regularization for the Cauchy Problem," Inverse Probl., vol. 27, no. 045005., 2011.
J. Cheng, Y. C. Hon , T. Wei and M. Yamamoto, "Numerical computation of a Cauchy problem for Laplace’s equation," ZAMM Z. Angew. Math. Mech., vol. 81, p. 665–674, 2001.
T. Wei , Y. C. Hon and J. Cheng, "Computation for multidimensional Cauchy problem," SIAM J. Control Optim., vol. 42, p. 381–396, 2003.
H. Han, L. Ling and T. Takeuchi, "An energy regularization for Cauchy problems of Laplace equation in annulus domain," Commun. Comput. Phys., vol. 9, p. 878–896, 2011.
D. N. Hào and D. Lesnic, "The Cauchy problem for Laplace’s equation via the conjugate gradient method," IMA J. Appl. Math., vol. 65, p. 199–217, 2000.
DOI: 10.15408/inprime.v3i2.20917
Refbacks
- There are currently no refbacks.