Cubic Polynomial for the Series of Consecutive Cubes under Alternating Signs
Abstract
This paper aims to develop an elegant formula for the series of consecutive cubes of natural numbers under alternating signs. In addition, this paper investigates the formula under odd and even number of terms and discuss some important findings.
Keywords: Consecutive cubes; alternating signs; odd and even terms.
2010 Mathematics Subject Classification: 11B13, 11B50, 97I30
Abstrak
Paper ini bertujuan membangun formula yang elegan untuk deret berganti tanda bilangan-bilangan kubik berurutan. Paper ini juga menyelidiki formula untuk banyak suku ganjil dan untuk banyak suku genap, dan mendiskusikan beberapa temuan penting.
Kata kunci:. Bilangan kubik berurutan, berganti tanda, suku ganjil dan suku genap
Keywords
References
G. F. C. de Bruyn and J. M. de Villiers, "Formulas for 1^p+2^p+... +n^p.," The Fibonacci Quarterly, vol. 32, no. 3, pp. 271-276, 1994.
F. T. Howard , "Sums of powers of integers via generating functions," Fibonacci Quarterly, vol. 34, no. Retrieved from https://www.fq.math.ca/Scanned/34-3/howard.pdf, pp. 244-256, 1996.
D. Kalman, "Sums of Powers by Matrix Methods," The Fibonacci Quarterly, vol. 28, no. 1, pp. 60-71, 1990.
M. Merca, "An alternative to Faulhaber’s formula," The American Mathematical Monthly, vol. 122, no. 6. DOI: 10.4169/amer.math.monthly.122.6.599, pp. 599-601, 2014.
B. Turner, "Sums of Powers of Integers via the Binomial Theorem," Mathematics Magazine, vol. 53, pp. 92-96, 1980.
L. F. Casinillo and L. A. Mamolo, "Alternative Formula for the Series of Consecutive m-Squares under Alternating Signs," InPrime: Indonesian Journal of Pure and Applied Mathematics, vol. 2, no. 2, pp. 91-96, 2020.
DOI: 10.15408/inprime.v3i2.20116
Refbacks
- There are currently no refbacks.