Some Results on a Generalized Version of Congruent Numbers

Leomarich F. Casinillo, Emily L. Casinillo



This paper aims to construct a new formula that generates a generalized version of congruent numbers based on a generalized version of Pythagorean triples. Here, an elliptic curve equation is constructed from the derived generalized version of Pythagorean triples and congruent numbers and gives some new results.

Keywords: Pythagorean triple, congruent number, elliptic curve equation.



Artikel ini bertujuan untuk mengkonstruksi formula baru yang membangun versi yang lebih umum dari bilangan-bilangan kongruen berdasarkan versi triple Pythagoras yang diperumum. Di sini, akan dikonstruksi suatu persamaan kurva eliptik dari triple Pythagoras dan bilangan-bilangan kongruen dalam versi yang diperumum untuk menghasilkan hasil-hasil yang baru.

Kata kunci: triple Phytagoras, bilangan kongruen, persamaan kurva eliptik.

2010 Mathematics subject classification: 11A07, 11A41, 11D45, 11G07.


Pythagorean triple; congruent number; elliptic curve


L. F. Casinillo, “Some New Notes on Mersenne Primes and Perfect Numbers,” Indonesian J. Mathematics Education, vol. 3, no. 1, pp. 15–22, 2020, doi: 10.31002/ijome.v3i1.2282.

E. L. Casinillo, L. F. Casinillo, J. S. Valenzona, and D. L. Valenzona, “On Triangular Secure Domination Number,” Inprime: Indonesian Journal of Pure Applied Mathematics, vol. 2, no. 2, pp. 105–110, 2020, doi: 10.15408/inprime.v2i2.15996.

L. F. Casinillo and L. A. Mamolo, “Alternative Formula for the Series of Consecutive m-Squares under Alternating Signs,” Inprime: Indonesian Journal of Pure Applied Mathematics, vol. 2, no. 2, pp. 91–96, 2020, doi: 10.15408/inprime.v2i2.15845.

I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers. John Wiley and Sons, Inc. Canada, 1991.

K. H. Rosen, Elementary Number Theory & Its Applications (3th Edition). Addison-Wesley Publishing Company, USA, 1993.

L. E. Dickson, History of the theory of numbers. Chelsea Pub. Co., New York, 1971.

D. Vazzana, A., Erickson, M., & Garth, Introduction to Number Theory (1st ed.). Chapman and Hall/CRC, 2007.

L. Casinillo and E. L. Casinillo, “Some Notes on a Generalized Version of Pythagorean Triples,” Jurnal Riset dan Aplikasi Matematika (JRAM), vol. 4, no. 2, pp. 103–107, 2020.

J. S. Chahal, “Congruent numbers and elliptic curves,” The American Mathemathical Monthly, vol. 113, no. 4, pp. 308–317, 2006, doi: 10.2307/27641916.

J. V Leyendekkers and A. Shannon, “The number of primitive Pythagorean triples in a given interval,” Notes Number Theory Discrete Mathematics, vol. 18, no. 1, pp. 49–57, 2012.

L. Djerassem and D. Tieudjo, “On Congruent Numbers Elliptic Curves,” IOSR Journal of Mathemathics, vol. 16, no. 3, pp. 1–5, 2020, doi: 10.9790/5728-1603030105.

J. Brown, “Congruent numbers and elliptic curves,” 2007, [Online]. Available:

P. Monsky, “Mock heegner points and congruent numbers,” Mathematische Zeitschrift, vol. 204, no. 1, pp. 45–67, 1990, doi: 10.1007/BF02570859.

R. Alter, “The Congruent Number Problem,” The American Mathematical Monthly, vol. 87, no. 1, pp. 43–45, 1980, doi: 10.2307/2320381.

M. Kan, “θ-congruent numbers and elliptic curves,” Acta Arithmetica, vol. 94, pp. 153–160, 2000.

Full Text: PDF

DOI: 10.15408/inprime.v3i1.17922


  • There are currently no refbacks.