World Gold Price Forecast using APARCH, EGARCH and TGARCH Model

Yanne Irene, Madona Yunita Wijaya, Aisyah Muhayani

Abstract


Abstract

Investment is a process of investing money for profit or material result. One investment commodity is gold. Gold is a precious metal in which the value tends to fluctuate over time. This indicates that there is a non-constant variance called heteroscedasticity. The appropriate time-series model to solve this heteroscedasticity problem is ARCH/GARCH. However, this model can't be applied for the financial cases that have an asymmetric effect (the downward and increase tendency in the level of volatility when returns rise and vice versa). Therefore, in this research, we forecast the world gold prices using APARCH, EGARCH, and TGARCH methods. We use the monthly world gold price data from June 1993 until May 2018. The result shows that the best-fitted model to forecasting the world gold prices is EGARCH (1.1). This model has the smallest error than the other models with a Mean Absolute Percentage Error (MAPE) value of 4.66%.

Keywords: return; volatilities; heteroscedasticity; asymmetric effect; APARCH; EGARCH; TGARCH.

 

Abstrak

Investasi adalah proses menginvestasikan uang untuk keuntungan atau hasil material. Salah satu komoditas investasi adalah emas. Emas adalah logam mulia yang nilainya cenderung berfluktuasi dari waktu ke waktu. Ini menunjukkan bahwa ada varian non-konstan yang disebut heteroskedastisitas. Metode deret waktu yang tepat untuk menyelesaikan masalah ini adalah ARCH/GARCH. Namun model ini tidak dapat digunakan untuk kasus keuangan yang memiliki efek asimetris (kecenderungan menurun dan meningkatnya volatilitas ketika nilai return naik dan sebaliknya). Oleh karena itu, dalam penelitian ini, kami memprediksi harga emas dunia menggunakan metode APARCH, EGARCH, dan TGARCH dengan data harga emas dunia bulanan pada bulan Juni 1993 - Mei 2018. Hasilnya menunjukkan bahwa, di antara ketiga metode itu, model terbaik untuk memprediksi harga emas dunia adalah EGARCH (1.1) dengan nilai Mean Absolute Percentage Error (MAPE) sebesar 4,66%.

Kata kunci: return; volatilitas; heteroskedastisitas; efek asimetris; APARCH; EGARCH; TGARCH.


Keywords


return, volatilities, heteroscedasticity, asymmetric effect, APARCH, EGARCH, TGARCH.

References


R. F. Engle, "Autoregressive Conditional Heteroscedasticity with Estimate of the Variance of United Kingdom Inflation," Econometrica, pp. 987-1008, 1982.

T. Bollerslev, "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, vol. 31, pp. 307-327, 1986.

W. Enders, Applied Econometric Time Series Fourth Edition, New York: John Wiley and Sons, INC, 1995.

E. A. Akpan and I. U. Moffat, "Detection and Modelling of Asymmetric GARCH Effects in a Discrete-Time Series," International Journal of Statistics and Probability, vol. 6, no. 6, pp. 111-119, 2017.

H. Chen, J. Zhang, Y. Tao and F. Tan, "Asymmetric GARCH Type Models for Asymmetric Volatility Characteristics Analysis and Wind Power Forecasting," Prot Control Mod Power Syst , vol. 4, no. 29, 2019, https://doi.org/10.1186/s41601-019-0146-0.

G. Ali, "EGARCH, GJR-GARCH, TGARCH, AVGARCH, NGARCH, IGARCH and APARCH Models for Pathogens at Marine Recreational Sites," Journal of Statistical and Econometric Methods, vol. 2, no. 3, pp. 57-73, 2013.

D. Chikobvu and T. Makoni, "Statistical modelling of Zimbabwe’s international tourist arrivals using both symmetric and asymmetric volatility models," Journal of Economic and Financial Sciences, vol. 12, 2019, 10.4102/jef.v12i1.426.

S. O. Ibrahim, "Forecasting the volatilities of the Nigeria stockmarket prices," CBN Journal of Applied Statistic, vol. 8, no. 2, pp. 23-45, 2017.

S. Kumari and S. Priyanka, "Modelling Stock Return Volatility in India," Munich Personal RePEc Archive, Paper No. 86674, 2018.

R. S. Tsay, Analysis of Financial Time Series Second Edition, Canada: A John Wiley and Sons, INC Publication, 2005.

J. D. Cryer and K. S. Chan, Time Series Analysis with Application with R, New York: Springer Science+Business, LLC, 2008.

D. Ding, "Modeling of Market Volatility with APARCH Model," Uppsala University, Swedia, 2011.

B. D. Nelson, "Conditional heteroskedasticity in asset returns: a new approach," Econometrica, vol. 59, p. 347–70, 1991.

J. M. Zakoian, "Threshold heteroskedasticity models," Journal of Economic Dynamics and Control, vol. 18, no. 5, pp. 931-955, 1994.

S. Makridakis, "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, vol. 9, no. 4, pp. 527-529 doi:10.1016/0169-2070(93)90079-3, 1993.


Full Text: PDF

DOI: 10.15408/inprime.v2i2.14779

Refbacks

  • There are currently no refbacks.