Estimation Parameter d in Autoregressive Fractionally Integrated Moving Average Model in Predicting Wind Speed
Abstract
Wind speed is one of the most important weather factors in the landing and takeoff process of airplane because it can affect the airplane's lift. Therefore, we need a model to predict the wind speed in an area. In this research, the wind speed forecast using the ARIMA model is discussed which has differencing parameters in the form of fractions. This model is called the ARFIMA model. In estimating differencing parameters two methods are considered, namely parametric and semiparametric methods. Exact Maximum Likelihood (EML) is used under parametric method. Meanwhile, four methods semiparametric estmation are used, i.e Geweke and Porter-Hudak (GPH), Smooth GPH (Sperio), Local Whittle and Rescale Range (R/S). The result shows the best estimation method is GPH with the selected model is ARFIMA (2,0.334,0).
Keywords: ARFIMA, Parametric Method, Semiparametric Method.
Abstrak
Kecepatan angin merupakan salah satu faktor cuaca yang penting dalam proses pendaratan dan tinggal landas pesawat karena dapat mempengaruhi daya angkat pesawat. Oleh karena itu, diperlukan suatu model untuk memprakirakan kecepatan angin di suatu wilayah. Artikel ini membahas prakiraan kecepatan angin dengan menggunakan model ARIMA yang memiliki parameter differencing berupa bilangan pecahan. Model ini disebut model ARFIMA. Pada estimasi parameter differencing terdapat dua metode yang digunakan pada penelitian ini, yaitu metode parametrik dan metode semiparametrik. Metode parametrik yang digunakan adalah Exact Maximum Likelihood (EML) dan empat metode semiparametrik yang digunakan adalah Geweke and Porter-Hudak (GPH), Smooth GPH (Sperio), Local Whittle dan Rescale Range (R/S). Hasil analisis menunjukkan pada kasus ini metode estimasi terbaik adalah GPH dengan model terpilih adalah ARFIMA(2,0.334,0).
Kata kunci: ARFIMA, Metode Parametrik, Metode Semiparametrik.References
A. R. Damanhuri, A. Priyadi and M. H. Purmono, "Prediksi Kecepatan Angin Jangka Pendek Menggunakan Metode Fuzzy Linear Regression Untuk Mendapatkan Masukan Pada Kontroler Turbin Angin," JURNAL TEKNIK POMITS, vol. I, no. 2, pp. 1-6, 2014.
N. Ulinnuha and Y. Farida, "Prediksi Cuaca Kota Surabaya Menggunakan Autoregressive Integrated Moving Average (ARIMA) Box Jenkins dan Kalman Filter," Jurnal Matematika "MANTIK", vol. 4, no. 1, pp. 59-67, 2018.
A. P. Desvina and M. Anggriani, "Peramalan Kecepatan Angin Di Kota Pekanbaru Menggunakan Metode Box-Jenkins," Jurnal Sains dan Matematika Statistika, vol. I, no. 2, 2015.
W. W. Wei, Time Series Analysis : Univariate and Multivariate Methods. Second Edition, New York: Pearson Addison Wesley, 2006.
C. W. Granger and R. Joyeux, "An introduction to long‐memory time series models and fractional differencing," Journal of time series analysis, vol. I, pp. 15-29, 1980.
F. Sowell, "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of econometrics, vol. 53, no. 1-3, pp. 165-188, 1992.
V. Reisen, B. Abraham and S. Lopes, "Estimation of Parameters in ARFIMA Processes: A Simulation Study," Communications in Statistics-Simulation and Computation, vol. 30, no. 4, pp. 787-803, 2001.
J. Geweke and S. Porter-Hudak, "The Estimation and Application of Long Memory Time Series Models," Journal of Time Series Analysis, vol. 4, no. 4, pp. 221-238, 1983.
V. A. Reisen and S. Lopes, "Some Simulations and Applications of Forecasting Long-memory Time Series Models," Journal of Statistical Planning and Inference, vol. 80, no. 1-2, pp. 269-287, 1999.
H. R. Kunsch, "Statistical aspects of self-similar processes," in Proceedings of the First World Congress of the Bernoulli Society, 1987, Zurich, 1987.
P. M. Robinson, "Gaussian semiparametric estimation of long range dependence," The Annals of statistics, vol. 23, no. 5, pp. 1630-1661, 1995.
Hamdi, Energi Terbarukan, Jakarta: Kencana, 2016.
H. E. Hurst, "The problem of long-term storage in reservoirs," Hydrological Sciences Journal, vol. I, no. 3, pp. 13-27, 1956.
J. A. Doornik and M. Ooms, "A package for estimating, forecasting and simulating ARFIMA models: Arfima package 1.0 for Ox," Preprint, Erasmus University, 1999.
J. R. Hosking, "Fractional differencing," Biometrika, vol. 68, no. 1, pp. 165-176, 1981.
M. Boutahar and R. Khalfaoui, "Estimation of the long memory parameter in non stationary models: A Simulation Study," 2011.
R. A. H. Mohamed, "Using Arfima Models in Forecasting The Total Value Of Traded Securites On The Arab Republic of Egypt," International Journal of Research and Reviews in Applied Sciences, vol. 27, no. 1, pp. 26-34, 2016.
B. Joe and R. Sisir, "US Housing Price Bubbles: A Long Memory Approach," in 46th Annual Conference of the Money ,Macro and Finance Research Group, Durham University Business School, 2014.
G. Bharwaj and N. Swanson, "An Empirical Investigation of the Usefulness of ARFIMA Models for Predicting Macroeconomic and Financial Time Series," Journal of Econometrics, vol. 8, no. 1, pp. 539-578, 2006.
J. D. Cryer and K.-S. Chan, Time Series Analysis With Applications in R Second Edition Springer Science+ Business Media, LLC, 2008.
D. Rosadi, Analisis Ekonometrika & Runtun Waktu Terapan dengan R : Aplikasi untuk Bidang Ekonomi, Bisnis, dan Keuangan, Yogyakarta: ANDI, 2011.
National Climatic Data Center, "NOAA Satellite and Information Service," [Online]. Available: http://www7.ncdc.noaa.gov/CDO/dataproduct. [Accessed 5 November 2018].
DOI: 10.15408/inprime.v1i2.13676
Refbacks
- There are currently no refbacks.