Microwave Absorption Potential of La0.7[X0.95Y0.05]0.3MnO3 with Dual-Doped Sites {XY = (Ca,Ba), (Ca,Sr), and (Sr,Ba)}
Abstract
Keywords
Full Text:
PDFReferences
M. Zhang et al., “Multifunctional Ag-ZrB2 composite film with low infrared emissivity, low visible light reflectance and hydrophobicity,” Applied Surface Science, vol. 604, 2022, doi: https://doi.org/10.1016/j.apsusc.2022.154626.
M. F. Elmahaishi, R. S. Azis, I. Ismail, and F. D. Muhammad, “A review on electromagnetic microwave absorption properties: their materials and performance,” Journal of Materials Research and Technology, vol. 20, pp. 2188–2220, 2022, doi: https://doi.org/10.1016/j.mrt.2022.07.140.
S. Sharma, S. R. Parne, S. S. S. Panda, and S. Gandi, “Progress in microwave absorbing materials: A critical review,” Advances in Colloid and Interface Science, vol. 327, 2024, doi: https://doi.org/10.1016/j.cis.2024.103143.
S. Zhang et al., “Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: An overview of recent advances and prospects,” Journal of Alloys and Compunds, vol. 893, p. 162343, 2022, doi: https://doi.org/10.1016/j.jallcom.2021.162343.
Y. H. Lee and R. Mahendiran, “Transport and electron spin resonance studies in Mo-doped LaMnO3,” AIP Advances, vol. 13(2), p. 025115, 2023, doi: https://doi.org/10.1063/9.0000442.
S. Moratal, R. Benavente, M. D. Salvador, F. L. Penaranda-Foix, R. Moreno, and A. Borrel, “Microwave sintering study of strontium-doped lanthanum manganite in a single-mode microwave with electric and magnetic field at 2.45 GHz,” Journal of the European Ceramic Society, vol. 42, no. 13, pp. 5624–5630, 2022, doi: https://doi.org/10.1016/j.jeurceramsoc.2022.05.060.
P. Negi and A. Kumar, “MoS2 Nanoparticle/Activated Carbon Composite as A Dual-Band Material for Absorbing Microwaves,” Royal Society of Chemistry, vol. 3, pp. 4196–4206, 2021, doi: 10.1039/d1na002924.
F. Wang et al., “Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption,” Journal of Materials Science & Technology, vol. 105, pp. 92–100, 2022, doi: https://doi/org/10/1016/j.mst.2021.06.058.
T. Wang, X. Qian, D. Yue, X. Yan, H. Yamashita, and Y. Zhao, “CaMnO3 perovskite nanocrystals for efficient peroxydisulfate activation,” Chemical Engineering Journal, vol. 398, p. 125638, 2020, doi: https://doi.org/10.1016/j.cej.2020.125638.
W. Deng et al., “Morphology modulated defects engineering from MnO2 supported on carbon foam toward excellent electromagnetic wave absorption,” Carbon, vol. 206, pp. 192–200, 2023, doi: https://doi.org/10.1016/j.carbon.2023.02.039.
J. Zheng et al., “Enhanced Electrochemical Performance of LaMnO3 Nanoparticles by Ca/Sr Doping,” Coatings, vol. 14, no. 20, pp. 2–9, 2023, doi: http://dx.doi.org/10.3390/coatings14010020.
Y. Cao et al., “Recent advances in perovskite oxides as electrode materials for supercapacitors,” Chemical Communications, vol. 57, no. 19, pp. 2343–2355, 2021, doi: https://doi.org/10.1039/D0CC07970G.
I. Wandira, P. K. Karo, and W. A. Adi, “Material Absorber Gelombang Elektromagnetik Berbasis (La0.8Ba0.2(Mn(1x)2ZnxFe(1-x)/2)O3(x = 0–0,6),” Jurnal Teori dan Aplikasi Fisika, vol. 06, no. 01, pp. 63–72, 2018.
G. H. Jonker and J. H. Van Santen, “Ferromagnetic Compounds of Manganese with Perovskite Structure,” Physica, vol. 16, no. 3, pp. 337–349, 1950, doi: https://doi.org/10.1016/0031-8914(50)90033-4.
L. Liu et al., “Effects of Gd doping on microwave absorption properties and mechanism for CaMnO3 perovskites,” Ceramics International, vol. 49, no. 14, pp. 23499–23509, 2023, doi: https://doi.org/10.1016/j.ceramint.2023.04.183.
X. Zeng, X. Cheng, R. Yu, and G. D. Stucky, “Electromagnetic microwave absorption theory and recent achievements in microwave absorbers,” Carbon, vol. 268, pp. 606–623, 2020, doi: https://doi.org/10.1016/j.carbon.2020.07.028.
L. Zhang, Y. Zhang, Y. D. Zhen, and S. P. Jiang, “Lanthanum Strontium Manganite Powders Synthesized by Gel-Casting for Solid Oxide Fuel Cell Cathode Materials,” Journal of the American Ceramic Society, vol. 90, no. 5, pp. 1406–1411, 2007, doi: https://doi.org/10.1111/j.1551-2916.2007.01568.x.
S. Moratal, R. Benavente, M. D. Salvador, F. L. Peñaranda-Foix, R. Moreno, and A. Borrell, “Microwave sintering study of strontium-doped lanthanum manganite in a single-mode microwave with electric and magnetic field at 2.45 GHz,” Journal of the European Ceramic Society, vol. 42, no. 13, pp. 5624–5630, 2022, doi: https://doi.org/10.1016/j.jeurceramsoc.2022.05.060.
G. Jayakumar, D. S. Poomagal, A. Al. Irudayaraj, A. D. Raj, S. K. Thresa, and P. Akhsadha, “Study on structural, magnetic and electrical properties of perovskite lanthanum strontium manganite nanoparticles,” Journal of Materials Science: Materials in Electronics, vol. 31, no. 11, pp. 20945–20953, 2020, doi: 10.1007/s10854-020-04608-9.
A. Princivalle and E. Djurado, “Nanostructured LSM/YSZ composite cathodes for IT-SOFC: A comprehensive microstructural study by electrostatic spray deposition,” Solid State Ionic, vol. 179, no. 33–34, pp. 1921–1928, 2008, doi: https://doi.org/10.1016/j.ssi.2008.05.006.
F. Rizky, S. A. Saptari, A. Tjahjono, and D. S. Khaerudini, “Perovskite Manganit Analysis Based on La0.7Ca0.3Mn1-xTixO3 (x=0, 0.1, 0.2, and 0.3) as Potential Microwave Absorber Material with Sol-Gel Method,” Journal of Physics: Theories and Applications, vol. 6, no. 1, pp. 17–24, 2022, doi: https://dx.doi.org/10.20961/jphystheor-appl.v6i1.59142.
R. I. Admi, S. A. Saptari, A. Tjahjono, W. A. Adi, and I. N. Rahman, “Synthesis and Characterization Microwave Absorber Properties of La0.7(Ca1xSrx)0.3MnO3 Prepared by Sol-Gel Method,” in The 10th International Conference on Theoretical and Applied Physics (ICTAP2020) Journal of Physics: Conference Series, IOP Publishing, 2021, pp. 1–7. doi: doi:10.1088/1742-6596/1816/1/012091.
Y. Taryana, W. A. Adi, D. Mahmudin, and Y. Wahyu, “Structural, Magnetic and Microwave Absorption Characteristics of Ba1- xLaxFe12O19 (x = 0; 0.1; 0.2;0.3;0.5;0.7),” Key Engineering Materials, vol. 855, pp. 261–267, 2020, doi: http://dx.doi.org/10.4028/www.scientific.net/KEM.855.261.
E. Ahilandeswari, K. Sakthipandi, R. R. Kanna, M. Hubalovska, and D. Vigneswaran, “Lanthanum substitution effect on the structural, optical, and dielectrical properties of nanocrystalline BaFe2O4 ferrites,” Physica B: Condensed Matter, vol. 635, p. 413849, 2022, doi: https://doi.org/10.1016/j.physb.2022.413849.
L. Phor and V. Kumar, “Stuctural, magnetic and dielectric properties of lanthanum substituted Mn0.5Zn0.5Fe2O4,” Ceramics International, vol. 45, no. 17, pp. 22972–22980, 2019, doi: https://doi.org/10.1016/j.ceramint.2019.07.341.
B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” Journal of Applied Crystallography, vol. 34, no. 2, pp. 210–213, 2004, doi: https://doi.org/10.1107/S0021889801002242.
R. Hamdi, S. S. Hayek, A. M. Samara, Y. Tong, S. A. Mansour, and Y. S. Haik, “Williamson-Hall technique for magnetic cooling in nanosized manganite LaNi0.25Mn0.75O3 and ferrire LaNi0.25Fe0.75O3,” Solid State Sciences, vol. 142, p. 107223, 2023, doi: https://doi.org/10.1016/j.solidstatesciences.2023.107223.
P. Orgiani et al., “Multiple double-exchange mechanism by Mn2+ doping in manganite compounds,” Physical Review B, vol. 82, no. 20, p. 205122, 2010, doi: https://doi.org/10.1103/PhysRevB.82.205122.
E. Pavarini and E. Koch, “Origin of Jahn-Teller distortion and orbital-order in LaMnO3,” Physical Review Letters, vol. 104, no. 8, p. 086402, 2010, doi: https://doi.org/10.1103/PhysRevLett.104.086402?_gl=1*16ig9nd*_gcl_au*NTIxNDc4NDQ5LjE3MzI2OTEzODg.*_ga*OTQxNDY5MDQ3LjE3MzI2OTEzODU.*_ga_ZS5V2B2DR1*MTczMjY5MTM4OC4xLjAuMTczMjY5MTM4OC42MC4wLjIxMDc0Mjk0NzM.
H. Cheng, H. Chen, C. Jin, and H. Bai, “Modulating the antiferromagnetic metallic and insulating states by lattice distortion for lightly-doped La0.92Sr0.08MnO3 films,” Journal of Magnetism and Magnetic Materials, vol. 565, p. 170300, 2023, doi: https://doi.org/10.1016/j.jmmm.2022.170300.
W. A. Adi et al., Electromagnetic Fields and Waves, Metamaterial: Smart magnetic Material for Microwave Absorbing Material. United Kingdom: IntechOpen, 2019. doi: 10.5772/intechopen.84471.
DOI: https://doi.org/10.15408/fiziya.v7i2.47935
Refbacks
- There are currently no refbacks.
This work is licensed under a CC-BY-SAÂ