Development of Perovskite Manganate-Based Materials as Microwave Absorbers (A Literature Study)

Amanda Haiqal, Danang Pamungkas Priambodo, Fattah Ardhi Faddakiri

Abstract


The 5.0 industrial revolution has led to the rapid development of digital devices and radar detection technology. Electromagnetic (EM) radiation generated by digital devices, such as smartphones, computers, and airplanes, is proven to cause great harm to human health. Manganese perovskite is one material that can produce changes such as its crystal structure, electron transfer, electrical properties, and magnetic properties. Doping applied to manganese perovskite-based materials can induce phenomena such as Colossal Magnetoresistance (CMR) and Magnetocaloric Effect (MCE), giving manganese perovskite-based materials great potential to be used as microwave absorbers. Through this article, the development of various manganese perovskite-based materials as microwave absorbers will be reviewed and summarized. Synthesis methods and microwave absorption mechanisms will also be reviewed. This article focuses on the doping of A-site and B-site manganese perovskite-based materials and their performance in absorbing microwaves. Hopefully, this article can be one of the guidelines for designing new manganese perovskite-based materials, to be applied as microwave absorbers.

Keywords


Perovskite manganate; microwave absorbers; mechanism; synthesis; doping

Full Text:

PDF

References


M. F. Elmahaishi, R. S. Azis, I. Ismail, and F. D. Muhammad, “A review on electromagnetic microwave absorption properties: their materials and performance,” Journal of Materials Research and Technology, vol. 20, pp. 2188–2220, Sep. 2022, doi: 10.1016/J.JMRT.2022.07.140.

X. Zeng, X. Cheng, R. Yu, and G. D. Stucky, “Electromagnetic microwave absorption theory and recent achievements in microwave absorbers,” Carbon, vol. 168. Elsevier Ltd, pp. 606–623, Oct. 30, 2020. doi: 10.1016/j.carbon.2020.07.028.

L. Cui, X. Han, F. Wang, H. Zhao, and Y. Du, “A review on recent advances in carbon-based dielectric system for microwave absorption,” Journal of Materials Science, vol. 56, no. 18. Springer, pp. 10782–10811, Jun. 01, 2021. doi: 10.1007/s10853-021-05941-y.

S. Zhang et al., “Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: An overview of recent advances and prospects,” J Alloys Compd, vol. 893, p. 162343, Feb. 2022, doi: 10.1016/J.JALLCOM.2021.162343.

S. Zhang, Z. Jia, B. Cheng, Z. Zhao, F. Lu, and G. Wu, “Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: a mini-review,” Adv Compos Hybrid Mater, vol. 5, no. 3, pp. 2440–2460, Sep. 2022, doi: 10.1007/s42114-022-00458-7.

M. S. Jamal et al., “Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review,” Renewable and Sustainable Energy Reviews, vol. 98. Elsevier Ltd, pp. 469–488, Dec. 01, 2018. doi: 10.1016/j.rser.2018.09.016.

E. A. R. Assirey, “Perovskite synthesis, properties and their related biochemical and industrial application,” Saudi Pharmaceutical Journal, vol. 27, no. 6. Elsevier B.V., pp. 817–829, Sep. 01, 2019. doi: 10.1016/j.jsps.2019.05.003.

H. yu Zhang, R. Li, W. wu Liu, M. Zhang, and M. Guo, “Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells,” International Journal of Minerals, Metallurgy and Materials, vol. 26, no. 4. University of Science and Technology Beijing, pp. 387–403, Apr. 01, 2019. doi: 10.1007/s12613-019-1748-2.

Y. Cao et al., “Recent advances in perovskite oxides as electrode materials for supercapacitors,” Chemical Communications, vol. 57, no. 19. Royal Society of Chemistry, pp. 2343–2355, Mar. 07, 2021. doi: 10.1039/d0cc07970g.

N. F. Atta, A. Galal, and E. H. El-Ads, “Perovskite Nanomaterials – Synthesis, Characterization, and Applications,” in Perovskite Materials - Synthesis, Characterisation, Properties, and Applications, InTech, 2016, pp. 113–117. doi: 10.5772/61280.

M. U. Faruqi, A. Tjahjono, and S. A. Saptari, “Analisis Struktur Kristal dan Sifat Kemagnetan Material Komposit Perovskite Manganit Nd0,6Sr0,4MnO3/ZnO,” Al-Fiziya: Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics, vol. 3, no. 1, pp. 1–8, Aug. 2020, doi: 10.15408/fiziya.v3i1.16158.

M. Al-Rabi, A. Tjahjono, and S. A. Saptari, “Analisis Fasa, Struktur Kristal dan Sifat Kemagnetan Material Komposit Berbasis Nd0,6Sr0,4MnO3/Fe2O3,” Al-Fiziya: Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics, vol. 3, no. 2, pp. 114–122, Dec. 2020, doi: 10.15408/fiziya.v3i2.17638.

M. S. Cao, W. L. Song, Z. L. Hou, B. Wen, and J. Yuan, “The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites,” Carbon N Y, vol. 48, no. 3, pp. 788–796, Mar. 2010, doi: 10.1016/j.carbon.2009.10.028.

S. Wardiyati, W. Ari Adi, dan Didin Sahidin Winatapura Pusat Sains dan Teknologi Bahan Maju, K. Puspiptek, and T. selatan, “Sintesis dan Karakterisasi Microwave Absorbing Material Berbasis Ni-SiO2 dengan Metode Sol-Gel,” 2018.

Y. E. Gunanto, E. Jobiliong, and W. A. Adi, “Microwave absorbing properties of Ba0.6Sr0.4Fe12-zMnzO19 (z = 0 - 3) materials in X-Band frequencies,” Journal of Mathematical and Fundamental Sciences, vol. 48, no. 1, pp. 55–65, 2016, doi: 10.5614/j.math.fund.sci.2016.48.1.6.

S. S. Pinto and M. C. Rezende, “Performance prediction of microwave absorbers based on POMA/carbon black composites in the frequency range of 8.2 to 20 GHz,” Journal of Aerospace Technology and Management, vol. 10, 2018, doi: 10.5028/jatm.v10.764.

S. O. Nelson, “Dielectric properties measurement techniques and applications,” Transactions of the American Society of Agricultural Engineers, vol. 42, no. 2, pp. 523–529, 1999, doi: 10.13031/2013.13385.

Y. Taryana, A. Manaf, N. Sudrajat, and Y. Wahyu, “Material Penyerap Gelombang Elektromagnetik Jangkauan Frekuensi Radar,” Jurnal Keramik dan Gelas Indonesia, vol. 28, no. 1, pp. 1–29, 2019.

Z. Zeng et al., “Rare-earth-containing perovskite nanomaterials: Design, synthesis, properties and applications,” Chemical Society Reviews, vol. 49, no. 4. Royal Society of Chemistry, pp. 1109–1143, Feb. 21, 2020. doi: 10.1039/c9cs00330d.

H. Wu and X. Zhu, “Perovskite Oxide Nanocrystals – Synthesis, Characterization, Functionalization, and Novel Applications,” in Perovskite Materials - Synthesis, Characterisation, Properties, and Applications, InTech, 2016, pp. 155–161. doi: 10.5772/61640.

S. Saptari, A. Manaf, and B. Kurniawan, “Microwave Absorbing Properties of La0.67Ba0.33Mn1-xNixO3,” Jurnal Sains Materi Indonesia, vol. 15, no. 4, pp. 183–186, Jul. 2012, [Online]. Available: http://jusami.batan.go.id

S. A. Saptari, A. Manaf, and B. Kurniawan, “Microwave Absorbing Properties of La0.67Ba0.33Mn1-xTixO3 in The Frequency Range 8-12 GHz,” International Journal of Basic & Applied Sciences IJBAS-IJENS, vol. 14, no. 03, pp. 1410403–5959, 2014.

S. Ahmiatri Saptari, A. Manaf, and B. Kurniawan, “THE MICROWAVE ABSORPTION PROPERTIES OF La0.67Ba0.33Mn1-yNiy/2Tiy/2O3 IN THE FREQUENCY RANGE 8-12 GHz,” 2013.

S. Zhang and Q. Cao, “Microwave absorption performance of La0.7Sr0.3MnO3 with different sintering temperatures,” in Advanced Materials Research, 2012, pp. 1399–1402. doi: 10.4028/www.scientific.net/AMR.415-417.1399.

J. W. Liu, J. J. Wang, and H. T. Gao, “Infrared emissivities and microwave absorption properties of perovskite La1-xCaxMnO3 (0≤x≤0.5),” Materials Science Forum, vol. 914, pp. 96–101, 2018, doi: 10.4028/www.scientific.net/MSF.914.96.

F. Rizky, S. A. Saptari, A. Tjahjono, and D. S. Khaerudini, “Perovskite Manganit Analysis Based on La0.7Ca0.3Mn1-xTixO3 (x=0, 0.1, 0.2, and 0.3) as Potential Microwave Absorber Material with Sol-Gel Method,” Journal of Physics: Theories and Applications, vol. 6, no. 1, p. 17, Mar. 2022, doi: 10.20961/jphystheor-appl.v6i1.59142.

S. A. Saptari, N. H. Lathifah, A. Tjahjono, and D. S. Khaerudini, “Analysis of crystal structure and reflection loss of material based on La0.7Sr0.3Mn1-x(Ni, Ti)x/2O3 (x=0.1, 0.3, and 0.5) applications for microwave absorbers,” Journal of Physics: Theories and Applications, vol. 6, no. 2, p. 106, Sep. 2022, doi: 10.20961/jphystheor-appl.v6i2.60178.

F. Jiang, J. Zheng, L. Liang, M. Zhang, and Y. Wang, “Microwave absorbing properties of La0.1Ca0.9MnO3 porous microsphere synthesized by method of precipitation,” Journal of Materials Science: Materials in Electronics, vol. 26, no. 4, pp. 2243–2247, Apr. 2015, doi: 10.1007/s10854-015-2676-1.

H. A. Jahn and E. Teller, “Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy,” Proc R Soc Lond A Math Phys Sci, vol. 161, no. 905, pp. 220–235, 1937, [Online]. Available: http://www.jstor.org/stable/96911

B. Zhao et al., “Poly(vinylidene fluoride)/Cu@Ni Anchored Reduced-Graphene Oxide Composite Films with Folding Movement to Boost Microwave Absorption Properties,” ES Energy and Environment, vol. 14, pp. 79–86, Dec. 2021, doi: 10.30919/esee8c488.

P. Chai, X. Liu, Z. Wang, M. Lu, X. Cao, and J. Meng, “Tunable synthesis, growth mechanism, and magnetic properties of La0.5Ba0.5MnO3,” Cryst Growth Des, vol. 7, no. 12, pp. 2568–2575, Dec. 2007, doi: 10.1021/cg070523j.

S. O. Manjunatha, A. Rao, T. Y. Lin, C. M. Chang, and Y. K. Kuo, “Effect of Ba substitution on structural, electrical and thermal properties of La0.65Ca0.35-xBaxMnO3(0 ≤ x ≤ 0.25) manganites,” J Alloys Compd, vol. 619, pp. 303–310, Jan. 2015, doi: 10.1016/j.jallcom.2014.09.042.

M. Chebaane, R. Bellouz, M. Oumezzine, E. K. Hlil, and A. Fouzri, “Copper-doped lanthanum manganite La0.65Ce0.05Sr0.3Mn1-XCuxO3 influence on structural, magnetic and magnetocaloric effects,” RSC Adv, vol. 8, no. 13, pp. 7186–7195, 2018, doi: 10.1039/c7ra13244a.

T. Komala and B. Kurniawan, “Structural and morphological of Cu doped La0.7Ba0.1Sr0.2 Mn1-xCuxO3 perovskite,” J Phys Conf Ser, vol. 1170, no. 1, May 2019, doi: 10.1088/1742-6596/1170/1/012068.

J. Deng, “Microwave absorbing properties of La1-xBaxMnO3 (x=0.1,0.2,0.3,0.4,0.5) nano-particles,” J Phys Conf Ser, vol. 1777, no. 1, Feb. 2021, doi: 10.1088/1742-6596/1777/1/012032.

Y. he Liu, S. kang Pan, L. chun Cheng, and Y. cheng Chen, “Excellent microwave absorption performance and wideband response of Pr1−xSrxMnO3 powders fabricated by sol–gel technique,” J Solgel Sci Technol, vol. 97, no. 2, pp. 281–290, Feb. 2021, doi: 10.1007/s10971-020-05462-1.

Y. he Liu, S. kang Pan, L. chun Cheng, H. yuan Yao, Y. hang Zhai, and Y. cheng Chen, “Electromagnetic wave absorption properties of Pr1-xBaxMnO3 ceramics prepared by a sol–gel combustion method,” Ceram Int, vol. 47, no. 19, pp. 27639–27649, Oct. 2021, doi: 10.1016/j.ceramint.2021.06.188.

R. I. Admi, S. A. Saptari, A. Tjahjono, I. N. Rahman, and W. A. Adi, “Synthesis and characterization microwave absorber properties of La0.7(Ca1-xSrx)0.3MnO3prepared by Sol-Gel method,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Mar. 2021. doi: 10.1088/1742-6596/1816/1/012091.

B. Kurniawan, W. Laksmi, and N. A. Sahara, “Microwave Absorption Properties of La0.8Ca0.2-xAgxMnO3 (x=0.05; X=0.15) Synthesized by Sol-Gel Method,” in Journal of Physics: Conference Series, Institute of Physics Publishing, May 2018. doi: 10.1088/1742-6596/1011/1/012008.

B. Kurniawan, W. Laksmi, and R. Kamila, “Effect of Ag-doping on microwave absorption properties of La0.8Ca0.2-xAgxMnO3 (x = 0 and x = 0.1),” in AIP Conference Proceedings, American Institute of Physics Inc., Oct. 2018. doi: 10.1063/1.5064041.

W. D. Laksanawati, B. Kurniawan, R. Andika, U. Widyaiswari, and I. Fauziyah, “Microwave absorber properties of La0.67Sr0.33Mn0.8Ni0.2O3 using sol gel synthesis methods with sintering temperature 850 °c,” AIP Conf Proc, vol. 1862, Jul. 2017, doi: 10.1063/1.4991161.

I. Wandira, K. Karo, W. A. Adi, B. T. Nuklir, and N. Jakarta, “Material Absorber Gelombang Elektromagnetik Berbasis (La0.8Ba0.2)(Mn(1-x)/2ZnxFe(1-x)/2)O3 (x = 0-0,6),” JURNAL Teori dan Aplikasi Fisika, vol. 06, no. 01, 2018.

W. A. Adi, M. N. Indro, and A. A. Kusumastuti, “Effect of Manganese Addition on the Structure, Magnetic Properties and Microwave Absorption of La0.8Ba0.2MnxFe1/2(1-x)Ti1/2(1-x)O3,” IOP Conf Ser Earth Environ Sci, vol. 58, no. 1, Apr. 2017, doi: 10.1088/1755-1315/58/1/012047.

F. A. Kurniawan, S. A. Saptari, A. Tjahjono, and D. S. Khaerudini, “Analysis Perovskite Material Absorber Based on Nd0.6Sr0.4MnxFe1/2(1-x)Ti1/2(1-x)O3 (x = 0, 0.1, 0.2) by Sol-Gel Method,” Journal of Physics: Theories and Applications, vol. 6, no. 1, p. 55, Mar. 2022, doi: 10.20961/jphystheor-appl.v6i1.59122.

H. Pang et al., “Research advances in composition, structure and mechanisms of microwave absorbing materials,” Composites Part B: Engineering, vol. 224. Elsevier Ltd, Nov. 01, 2021. doi: 10.1016/j.compositesb.2021.109173.




DOI: https://doi.org/10.15408/fiziya.v6i2.36991 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


Web Analytics Made Easy - StatCounterView My Stats

Flag Counter

Creative Commons License

This work is licensed under a CC-BY-SAÂ