Calculating InN/GaN Transmission Coefficient from Single Barrier to Five Barriers with Propagation Matrix and Transfer Matrix Methods

Ishmah Ulya, Russell Ong, Yuan Alfinsyah Sihombing

Abstract


In this study, the value of transmission coefficient on InN/GaN semiconductor from a single barrier to five barriers was determined by using the propagation matrix method and the transfer matrix method. This study aims to see the effect of adding a barrier to the number of resonance tunneling that occurs, to see the difference in transmission coefficient values which was obtained with the two methods, and to determine the effectiveness of the program execution process time from the propagation matrix and transfer matrix methods using Matlab programming. The results obtained indicated that the value of the transmission coefficient obtained from the two methods was the same. As the number of barriers increases, the number of resonance tunneling that occurs will increase. These two matrix methods had differences in terms of the effectiveness of the program execution process time and calculation process. The propagation matrix method was considered more effective than the transfer matrix method.

Keywords


InN/GaN; Propagation Matrix Method; The Tunneling Effect; Transfer Matrix Method; Transmission Coefficient.

Full Text:

PDF

References


M. K. Huda, “Studi Analisis Quantum Tunneling Tiga Potensial Penghalang Graphene dengan Metode Propagasi Matriks pada Partikel Tunak,” Universitas Jember, 2019.

N. C. Agustin, C. I. W. Nugroho, and M. A. Pratama, “Koefisien Transmisi InN (Indium Nitrit) Penghalang Tunggal Hingga Penghalang Tiga dengan Metode Schrodinger,” vol. 4, no. 1, pp. 102–106, 2019.

M. K. Huda, S. H. B. Prastowo, and Z. R. Ridlo, “Analisis Efek Terobosan Empat Perintang pada Graphene,” Semin. Nas. Pendidik. Fis. 2018, vol. 3, no. 2, pp. 153–158, 2018.

B. Supriadi, Z. R. Ridlo, Yushardi, C. I. W. Nugroho, J. Arsanti, and S. Septiana, “Tunnelling Effect on Triple Potential Barriers GaN , SiC, and GaAs,” IOP Conf. Ser. J. Phys., pp. 1–8, 2019, doi: 10.1088/1742-6596/1211/1/012034.

J. A. Lolo, “Studi Numerik Efek Resonansi pada Sumur Kuantum ( QWs ) In x Ga 1-x As / InP Tensile Strained,” Universitas Hasanuddin, 2013.

N. Rizky, “Analisis Hubungan Jarak Antar Penghalang Ganda dengan Koefisien Transmisi dan Koefisien Refleksi,” Universitas Jember, 2020.

A. F. J. Levi, Applied Quantum Mechanics, Second Edi. Cambridge: Cambridge University Press, 2006.

O. Pujol, R. Carles, and J. P. Perez, “Quantum propagation and confinement in 1D systems using the transfer- matrix method,” Eur. J. Phys., vol. 35, pp. 1–26, 2014, doi: 10.1088/0143-0807/35/3/035025.

P. D. C. King, T. D. Veal, C. E. Kendrick, L. R. Bailey, S. M. Durbin, and C. F. Mcconville, “InN/GaN Valence Band Offset : High-Resolution X-Ray Photoemission Spectroscopy Measurements,” Phys. Rev. B, vol. 78, pp. 1–4, 2008, doi: 10.1103/PhysRevB.78.033308.

M. Levinshtein, S. Rumyantsev, and M. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe. New York: John Wiley and Sons, Inc., 2001.

L. Chen, K. Chen, and C. Chen, “Group III- and Group IV-Nitride Nanorods and Nanowires,” in Nanowires and Nanobelts: Materials, Properties, and Devices, vol. 1, Z. L. Wang, Ed. New York: Springer, 2003, pp. 257–315.

I. Hamidah and W. W. Wenas, “Struktur Double Barrier Untuk Aplikasi Pada Divais Silikon Amorf,” Kontribusi Fis. Indones., vol. 12, no. 4, pp. 2–6, 2001.




DOI: https://doi.org/10.15408/fiziya.v5i2.28549 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


Web Analytics Made Easy - StatCounterView My Stats

Flag Counter

Creative Commons License

This work is licensed under a CC-BY-SAÂ