Radial wave function of 2D and 3D quantum harmonic oscillator
Abstract
Keywords
Full Text:
PDFReferences
S. Gasiorowicz, Quantum Physics, 3rd ed. Nashville, TN: John Wiley & Sons, 2003.
M. Albert, “Quantum Mechanics Vol. 1.” Amsterdam: North-Holland, 1961.
L. M. B. C. Campos and M. J. S. Silva, “On hyperspherical associated Legendre functions: the extension of spherical harmonics to N dimensions.” arXiv, 2020. doi: 10.48550/ARXIV.2005.09603.
S. F. Viñas and F. Vega, “Magnetic properties of a Fermi gas in a noncommutative phase space.” arXiv, 2016. doi: 10.48550/ARXIV.1606.03487.
S. Biswas, P. Nandi, and B. Chakraborty, “Emergence of a geometric phase shift in planar noncommutative quantum mechanics,” Physical Review A, vol. 102, no. 2, p. 22231, Aug. 2020, doi: 10.1103/PhysRevA.102.022231.
V. P. Nair and A. P. Polychronakos, “Quantum mechanics on the noncommutative plane and sphere,” Physics Letters B, vol. 505, no. 1, pp. 267–274, 2001, doi: https://doi.org/10.1016/S0370-2693(01)00339-2.
A. Smailagic and E. Spallucci, “Isotropic representation of the noncommutative 2D harmonic oscillator,” Physical Review D, vol. 65, no. 10, p. 107701, Apr. 2002, doi: 10.1103/PhysRevD.65.107701.
A. Hatzinikitas and I. Smyrnakis, “The noncommutative harmonic oscillator in more than one dimension,” Journal of Mathematical Physics, vol. 43, no. 1, pp. 113–125, Dec. 2001, doi: 10.1063/1.1416196.
E. W. Weisstein, “Laguerre Differential Equation,” MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LaguerreDifferentialEquation.html.
G. B. Arfken, H. J. Weber, and F. E. Harris, “Chapter 18 - More Special Functions,” in Mathematical Methods for Physicists (Seventh Edition), G. B. Arfken, H. J. Weber, and F. E. Harris, Eds. Boston: Academic Press, 2013, pp. 871–933. doi: https://doi.org/10.1016/B978-0-12-384654-9.00018-9.
E. W. Weisstein, “Associated Laguerre Polynomial,” MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html.
G. B. Arfken, H. J. Weber, and F. E. Harris, “Chapter 15 - Legendre Functions,” in Mathematical Methods for Physicists (Seventh Edition), G. B. Arfken, H. J. Weber, and F. E. Harris, Eds. Boston: Academic Press, 2013, pp. 715–772. doi: https://doi.org/10.1016/B978-0-12-384654-9.00015-3.
M. L. Boas, Mathematical methods in the physical sciences, 3rd ed. Nashville, TN: John Wiley & Sons, 2005.
J. Zhang, “Fractional angular momentum in non-commutative spaces,” Physics Letters B, vol. 584, no. 1, pp. 204–209, 2004, doi: https://doi.org/10.1016/j.physletb.2004.01.049.
DOI: https://doi.org/10.15408/fiziya.v5i2.26172 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
This work is licensed under a CC-BY-SAÂ