Correlation between Scattering Matrix, Return Loss and Interface Reflection Loss in Nicolson Rose Wear Approximation

Wakid Ali Muntoha, Adam Badra Cahaya, Azwar Manaf

Abstract


The phenomenon behind the absorption of electromagnetic waves by absorbing
materials is resonance phenomenon. When there is a similarity between the value of the
impedance of electromagnetic waves in the air and the impedance of the material, the
absorption of energy by the material is maximized. The phenomenon is measured using an
auxiliary instrument, namely the Vector Network Analyzer. This instrument is very effective for
calculating the absorption value of electromagnetic waves. However, the Vector Network
Analyzer instrument which is mostly available in Indonesian research institutions cannot directly
display the reflection loss of the electromagnetic wave absorbing material. An effective method
that is effective for calculating the absorption in electromagnetic wave absorbing material is
Nicolson Rose Wear method. In this article, we design a computational tool based on Nicolson
Rose Wear approximation to calculate the reflection loss values from scattering matrix and
comparing it with return loss, which is often mistook as reflection loss.


Keywords


Nicolson-Ross-Wear, Permeability, Permittivity, Reflection Loss

Full Text:

PDF

References


D. Yuping, M. He, L. Xiaogang, L. Shunhua, and J. Zhijiang, “The microwave electromagnetic characteristics of manganese dioxide with different crystallographic structures,” Phys. B Condens. Matter, vol. 405, no. 7, pp. 1826–1831, 2010, doi: https://doi.org/10.1016/j.physb.2010.01.055.

F. Costa, M. Borgese, M. Degiorgi, and A. Monorchio, “Electromagnetic Characterisation of Materials by Using Transmission/Reflection (T/R) Devices,” Electronics , vol. 6, no. 4. 2017, doi: 10.3390/electronics6040095.

M. V Akhterov, M. V Akhterov, and M. V Akhterov, “Microwave Absorption in Nanostructures.” 2010.

L. Yang, A. Rida, R. Vyas, and M. M. Tentzeris, “RFID Tag and RF Structures on a Paper Substrate Using Inkjet-Printing Technology,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2894–2901, 2007, doi: 10.1109/TMTT.2007.909886.

M. W. H. IV and M. J. Havrilla, “A {NONDESTRUCTIVE} {TECHNIQUE} {FOR} {DETERMINING} {COMPLEX} {PERMITTIVITY} {AND} {PERMEABILITY} {OF} {MAGNETIC} {SHEET} {MATERIALS} {USING} {TWO} {FLANGED} {RECTANGULAR} {WAVEGUIDES},” Prog. Electromagn. Res., vol. 79, pp. 367–386, 2008, doi: 10.2528/pier07102405.

Y. Taryana, A. Manaf, N. Sudrajat, and Y. Wahyu, “Electromagnetic Wave Absorbing Materials on Radar Frequency Range,” J. Keramik dan Gelas Indones., vol. 28, no. 1, p. 1, Jun. 2019, doi: 10.32537/jkgi.v28i1.5197.

T. S. Bird, “Definition and Misuse of Return Loss [Report of the Transactions Editor-in-Chief],” IEEE Antennas Propag. Mag., vol. 51, no. 2, pp. 166–167, 2009, doi: 10.1109/MAP.2009.5162049.

R. B. Marks, “A multiline method of network analyzer calibration,” IEEE Trans. Microw. Theory Tech., vol. 39, no. 7, pp. 1205–1215, 1991, doi: 10.1109/22.85388.

W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE, vol. 62, no. 1, pp. 33–36, 1974, doi: 10.1109/PROC.1974.9382.

A. M. Nicolson and G. F. Ross, “Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques,” IEEE Trans. Instrum. Meas., vol. 19, no. 4, pp. 377–382, 1970, doi: 10.1109/TIM.1970.4313932.

F. Schwierz, J. Pezoldt, and R. Granzner, “Two-dimensional materials and their prospects in transistor electronics,” Nanoscale, vol. 7, no. 18, pp. 8261–8283, 2015, doi: 10.1039/c5nr01052g.

W. T. Hatmojo, “Perhitungan Permeabilitas dan Permitivitas Kompleks sebagai Fungsi Frekuensi pada Material Penyerap Gelombang Mikro,” Universitas Indonesia, 2013.

J. Baker-Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 8, pp. 1096–1103, 1990, doi: 10.1109/22.57336.

Suharno, “Pembuatan dan Karakterisasi Bi1-xYFeO3/C, BiFe1-yZnyO3/C, dan Bi0.88Y 0.12Fe1-yZnyO3/C Sebagai Absorber Gelombang Mikro Pada Frekuensi X Band.,” Universitas Indonesia, 2015.




DOI: https://doi.org/10.15408/fiziya.v5i2.22353 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


Web Analytics Made Easy - StatCounterView My Stats

Flag Counter

Creative Commons License

This work is licensed under a CC-BY-SAÂ