Law of Approach to Saturation for Determining Magnetic Intrinsic Behavior of BaFe12-xMnx/2Tix/2O19 and SrFe12-xMnx/2Tix/2O19

Rafael F Maniur, Adam Badra Cahaya, Azwar Manaf

Abstract


The problem with permanent magnetic materials of very high anisotropic fields is that it is still difficult to determine the intrinsic magnetic properties, when measured using a magnetometer which has a limited magnetic field. The Law of Approach to Saturation (LAS) mathematical model provides a way to measure permanent magnets, with high anisotropic fields by correcting the magnetization data of the first quadrant curve or the virgin curve of the minor hysteresis loop. In this research, a computational LAS program was conducted to compute the intrinsic magnetic properties of magnetic materials, such as saturation magnetization, anisotropy field and magnetocrystalline anisotropy constant. Magnetization data were obtained from permagraph measurements of barium hexaferrite (BaFe12O19), strontium hexaferrite (SrFe12O19) and microwave absorbers BaFe12-xMnx/2Tix/2O19 and SrFe12-xMnx/2Tix/2O19. The convergences of magnetization were assessed to determine the effect of substitution on barium hexaferrite and strontium hexaferrite materials on saturation magnetization values, anisotropy constants and anisotropic fields.

Keywords


barium hexaferrite; hysteresis loop; intrinsic magnetic properties; Law of Approach to Saturation; strontium hexaferrite

Full Text:

PDF

References


J. J. Croat, J. F. Herbst, R. W. Lee, and F. E. Pinkerton, “High‐energy product Nd‐Fe‐B permanent magnets,” Appl. Phys. Lett., vol. 44, no. 1, pp. 148–149, Jan. 1984, doi: 10.1063/1.94584.

J. Mohapatra and J. P. Liu, “Chapter 1 - Rare-Earth-Free Permanent Magnets: The Past and Future,” vol. 27, E. B. T.-H. of M. M. Brück, Ed. Elsevier, 2018, pp. 1–57.

L. Darmawan, Suparno, and A. Manaf, “Enhancement of Magnetic and Microwave Absorbing Properties of [Ba (Fe, Mn, Ti)12 O19]1-x–[CoFe12 O4] x (x = 0.2; 0.5; 0.8) Composites,” J. Phys. Conf. Ser., vol. 1485, p. 12046, 2020, doi: 10.1088/1742-6596/1485/1/012046.

A. Renuka Balakrishna and R. D. James, “A tool to predict coercivity in magnetic materials,” Acta Mater., vol. 208, p. 116697, 2021, doi: https://doi.org/10.1016/j.actamat.2021.116697.

F. Kools and A. Morel, “Ferrite Magnets: Improved Performance,” K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. B. T.-E. of M. S. and T. Veyssière, Eds. Oxford: Elsevier, 2004, pp. 1–5.

P. Gruszecki, C. Banerjee, M. Mruczkiewicz, O. Hellwig, A. Barman, and M. Krawczyk, “Chapter Two - The influence of the internal domain wall structure on spin wave band structure in periodic magnetic stripe domain patterns,” in Recent Advances in Topological Ferroics and their Dynamics, vol. 70, R. L. Stamps and H. B. T.-S. S. P. Schultheiß, Eds. Academic Press, 2019, pp. 79–132.

E. C. Devi and I. Soibam, “Effect of Zn doping on the structural, electrical and magnetic properties of MnFe2O4 nanoparticles,” Indian J. Phys., vol. 91, no. 8, pp. 861–867, 2017, doi: 10.1007/s12648-017-0981-7.

H. Zhang, D. Zeng, and Z. Liu, “The law of approach to saturation in ferromagnets originating from the magnetocrystalline anisotropy,” J. Magn. Magn. Mater., vol. 322, no. 16, pp. 2375–2380, 2010, doi: https://doi.org/10.1016/j.jmmm.2010.02.040.

B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials. John Wiley & Sons, 2011.

N. S. Akulov, “Über den Verlauf der Magnetisierungskurve in starken Feldern,” Zeitschrift für Phys., vol. 69, no. 11, pp. 822–831, 1931, doi: 10.1007/BF01339465.

W. F. Brown, “Theory of the Approach to Magnetic Saturation,” Phys. Rev., vol. 58, no. 8, pp. 736–743, Oct. 1940, doi: 10.1103/PhysRev.58.736.

R. Grössinger, “A critical examination of the law of approach to saturation. I. Fit procedure,” Phys. status solidi, vol. 66, no. 2, pp. 665–674, Aug. 1981, doi: https://doi.org/10.1002/pssa.2210660231.

L. Néel, “Relation entre la constante d{textquotesingle}anisotropie et la loi d{textquotesingle}approche à la saturation des ferromagnétiques,” J. Phys. le Radium, vol. 9, no. 6, pp. 193–199, 1948, doi: 10.1051/jphysrad:0194800906019300.

R. C. Pullar, “Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics,” Prog. Mater. Sci., vol. 57, no. 7, pp. 1191–1334, 2012, doi: https://doi.org/10.1016/j.pmatsci.2012.04.001.




DOI: https://doi.org/10.15408/fiziya.v4i2.22206 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


Web Analytics Made Easy - StatCounterView My Stats

Flag Counter

Creative Commons License

This work is licensed under a CC-BY-SA