Improved Steepest Descent Method using Modified Bessel Function K_(1/4 ) for Gamma Function Evaluation
Abstract
Keywords
Full Text:
PDFReferences
W. A. Bowers, “More about approximations to n!,” Am. J. Phys., vol. 51, no. 9, p. 778, Sep. 1983, doi: 10.1119/1.13141.
W. Burnside, “A rapidly convergent series for log N,” Messenger Math, vol. 46, no. 1, pp. 157–159, 1917.
W. Schuster, “Improving Stirling’s formula,” Arch. der Math., vol. 77, pp. 170–176, 2001.
C. Leubner, “Generalised Stirling approximations to N!,” Eur. J. Phys., vol. 6, no. 4, pp. 299–301, Oct. 1985, doi: 10.1088/0143-0807/6/4/016.
S. S. Petrova and A. D. Solov’ev, “The Origin of the Method of Steepest Descent,” Hist. Math., vol. 24, no. 4, pp. 361–375, 1997, doi: https://doi.org/10.1006/hmat.1996.2146.
J. C. Meza, “Steepest descent,” WIREs Comput. Stat., vol. 2, no. 6, pp. 719–722, 2010, doi: https://doi.org/10.1002/wics.117.
Y. Pu and J. Wang, “Fractional-order global optimal backpropagation machine trained by an improved fractional-order steepest descent method,” Front. Inf. Technol. Electron. Eng., vol. 21, no. 6, pp. 809–833, 2020, doi: 10.1631/FITEE.1900593.
J.-C. Son, M.-K. Baek, S.-H. Park, and D.-K. Lim, “Improved Immune Algorithm Combined with Steepest Descent Method for Optimal Design of IPMSM for FCEV Traction Motor,” Energies, vol. 14, no. 13, 2021, doi: 10.3390/en14133904.
E. J. Weniger and J. Cížek, “Rational approximations for the modified Bessel function of the second kind,” Comput. Phys. Commun., vol. 59, no. 3, pp. 471–493, 1990, doi: https://doi.org/10.1016/0010-4655(90)90089-J.
Z.-H. Yang and Y.-M. Chu, “On approximating the modified Bessel function of the second kind,” J. Inequalities Appl., vol. 2017, no. 1, p. 41, 2017, doi: 10.1186/s13660-017-1317-z.
DOI: https://doi.org/10.15408/fiziya.v4i2.21843 Abstract - 0 PDF - 0
Refbacks
- There are currently no refbacks.
This work is licensed under a CC-BY-SAÂ