The FLRW Universe Metric in 4+1 Spacetime Dimensional with Spherical Coordinate Invariance

Rangga Prasetya Alamsyah, Meini Aninda


The Friedmann-Lemaître-Robertson-Walker (FLRW) universe metric is an abstraction of the distance between two points in a time-evolving universe. The evolution of the FLRW universe can be either expansion or contraction. In this article, the FLRW universe metric in 4+1 spacetime is formulated. When this metric is relatively one dimension higher than the original metric. The addition of these dimensions is based on the assumption that the laws of physics have the same shape in the higher dimensions. A mathematical modeling idea is based on a spatial 4-dimensional isotropic sphere system immersed in this 5-dimensional spatial system. Then, Minkowski’s flat spacetime concept was used to couple the spatial dimensions with the temporal dimension. Thus, we find the FLRW universe metric in 4+1 spacetime. The result of formalism shows that there is a radius quantity in the extra metric dimension, and this radius quantity forms the angle with the other two spatial dimensions. Then, we also show that the dimension of the cosmic scale factor will always be relatively higher than the spatial dimension of the metric. This has implications for the expansion or contraction of the FLRW universe model which remains valid in high dimensions.


The FLRW Universe Metric, 4+1 Dimensional Spacetime, Expansion of The Universe, Contraction of The Universe, Higher Dimensional

Full Text:



H. Alatas, A. K. Falah, T. Wibowo, M. A. Qohhar, and B. E. Gunara, “Coordinate-time lapse function of FLRW accelerated expanding universe in dRGT massive gravity theory,” Int. J. Mod. Phys. D, vol. 29, no. 10, 2020, doi: 10.1142/S021827182050073X.

B. L’Huillier and A. Shafieloo, “Model-independent test of the FLRW metric, the flatness of the Universe, and non-local estimation of H0rd,” J. Cosmol. Astropart. Phys., vol. 2017, no. 1, 2017, doi: 10.1088/1475-7516/2017/01/015.

Q. Wang, “Reformulation of the Cosmological Constant Problem,” Phys. Rev. Lett., vol. 125, no. 5, 2020, doi: 10.1103/PhysRevLett.125.051301.

S. Cao et al., “Direct test of the FLRW metric from strongly lensed gravitational wave observations,” Sci. Rep., vol. 9, no. 1, 2019, doi: 10.1038/s41598-019-47616-4.

H. het Lam and T. Prokopec, “Singularities in FLRW spacetimes,” Phys. Lett. Sect. B Nucl. Elem. Part. High-Energy Phys., vol. 775, 2017, doi: 10.1016/j.physletb.2017.10.070.

S. Weinberg, “Massless particles in higher dimensions,” Phys. Rev. D, vol. 102, no. 9, 2020, doi: 10.1103/PhysRevD.102.095022.

J. Zhu et al., “X-ray reflection spectroscopy with Kaluza–Klein black holes,” Eur. Phys. J. C, vol. 80, no. 7, 2020, doi: 10.1140/epjc/s10052-020-8198-x.

R. Anugraha, Pengantar Teori Relativitas dan Kosmologi. Gadjah Mada University Press, 2005.

I. L. Zulfa, R. P. Alamsyah, and A. Fitriani, “Solusi Metrik Kerr-Newman Untuk Dimensi Ruang-waktu 3+1 Dengan Invariansi Rotasi Anisotropik,” Al-Fiziya J. Mater. Sci. Geophys. Instrum. Theor. Phys., vol. 3, no. 2, 2020, doi: 10.15408/fiziya.v3i2.18600.

I. L. Saptiani, “Solusi geometri schwarzschild untuk dimensi 4+1 dengan invarian rotasi isotropik,” 2019.

DOI: Abstract - 0 PDF - 0


  • There are currently no refbacks.

Web Analytics Made Easy - StatCounterView My Stats

Flag Counter

Creative Commons License

This work is licensed under a CC-BY-SA