Evaluasi Implementasi Algoritma Machine Learning K-Nearest Neighbors (kNN) pada Data Spektroskopi Gamma Resolusi Rendah

Muhammad Sholih Fajri, Nizar Septian, Edy Sanjaya

Abstract


Abstrak

 

Pada artikel ini kami mengevaluasi bagaimana implementasi algoritma machine learning k-Nearest Neighbors (kNN) pada data spektroskopi gamma beresolusi rendah. Penelitian ini bertujuan untuk mengetahui bagaimana performa kNN dalam mempelajari data tersebut. Kami melakukan berbagai variasi, yaitu: jumlah data training, jumlah data tes, jenis metric, dan nilai k untuk memperoleh performa terbaik dari algoritma ini. Data spektroskopi gamma diambil menggunakan sintilator NaI(Tl) Leybold Didactic dengan resolusi energi sebesar 10.9 keV per channel. Hasil variasi menunjukkan bahwa algoritma kNN memberikan hasil prediksi klasifikasi radioisotop yang sangat fluktuatif.

 

 

Abstract

 

In this paper we evaluate the implementation of a machine learning algorithm namely k-Nearest Neighbors (kNN) on low resolution gamma spectroscopy data. The aim is to provide the information of how well the algorithm performs on learning the data. We did the variation of number of training and test data, type of metric used, and values of k in order to see the best performance of the algorithm. The gamma spectroscopy data were taken using NaI(Tl) scintillator made by Leybold Didactic with resolution of 10.9 keV per channel. The variations show that the kNN algorithm produce significantly fluctuating accuracy to the prediction of radioisotope class.


Keywords


Accuracy; Euclidean; Gamma; k-Nearest Neighbors; Manhattan; Minkowski; Radioisotope; Akurasi; Euclidean; Gamma; k-Nearest Neighbors; Manhattan; Minkowski; Radioisotop

Full Text:

PDF

References


T.Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inf. Theory, vol. 13, no. 1, pp. 21–27, 1967.

S. Zhang, “Cost-sensitive KNN classification,” Neurocomputing, vol. 391, pp. 234–242, 2020.

M. A. jabbar, B. L. Deekshatulu, and P. Chandra, “Classification of Heart Disease Using K- Nearest Neighbor and Genetic Algorithm,” Procedia Technol., vol. 10, pp. 85–94, 2013.

R. Zubaedah, F. Xaverius, H. Jayawardana, and S. H. Hidayat, “Comparing euclidean distance and nearest neighbor algorithm in an expert system for diagnosis of diabetes mellitus,” Enfermería Clínica, vol. 30, pp. 374–377, 2020.

M. Kück and M. Freitag, “Forecasting of customer demands for production planning by local k-nearest neighbor models,” Int. J. Prod. Econ., p. 107837, 2020.

R. Arian, A. Hariri, A. Mehridehnavi, A. Fassihi, and F. Ghasemi, “Protein kinase inhibitors’ classification using K-Nearest neighbor algorithm,” Comput. Biol. Chem., vol. 86, p. 107269, 2020.

A. Coluccia, A. Fascista, and G. Ricci, “A k-nearest neighbors approach to the design of radar detectors,” Signal Processing, vol. 174, p. 107609, 2020.

J. Jiang, Y. Chen, X. Meng, L. Wang, and K. Li, “A novel density peaks clustering algorithm based on k nearest neighbors for improving assignment process,” Phys. A Stat. Mech. its Appl., vol. 523, no. 20180101044, pp. 702–713, 2019.

Ö. F. Ertuğrul and M. E. Tağluk, “A novel version of k nearest neighbor: Dependent nearest neighbor,” Appl. Soft Comput., vol. 55, pp. 480–490, 2017.

B. Wang and Z. Mao, “A dynamic ensemble outlier detection model based on an adaptive k-nearest neighbor rule,” Inf. Fusion, vol. 63, pp. 30–40, 2020.

T. M. Tran, X.-M. T. Le, H. T. Nguyen, and V.-N. Huynh, “A novel non-parametric method for time series classification based on k-Nearest Neighbors and Dynamic Time Warping Barycenter Averaging,” Eng. Appl. Artif. Intell., vol. 78, pp. 173–185, 2019.

Y. Pan, Z. Pan, Y. Wang, and W. Wang, “A new fast search algorithm for exact k-nearest neighbors based on optimal triangle-inequality-based check strategy,” Knowledge-Based Syst., vol. 189, p. 105088, 2020.

J. Han, M. Kamber, and J. Pei, “1 - Introduction,” in The Morgan Kaufmann Series in Data Management Systems, J. Han, M. Kamber, and J. B. T.-D. M. (Third E. Pei, Eds. Boston: Morgan Kaufmann, 2012, pp. 1–38.

N. M. Ball and R. J. Brunner, “Data Mining and Machine Learning in Astronomy,” Int. J. Mod. Phys. D, vol. 19, no. 07, pp. 1049–1106, Jul. 2010

M. Kamuda and C. J. Sullivan, “An automated isotope identification and quantification algorithm for isotope mixtures in low-resolution gamma-ray spectra,” Radiat. Phys. Chem., vol. 155, no. June 2018, pp. 281–286, 2019.

M. Kamuda, J. Zhao, and K. Huff, “A comparison of machine learning methods for automated gamma-ray spectroscopy,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 954, no. October, 2020.

H. Hata, K. Yokoyama, Y. Ishimori, Y. Ohara, Y. Tanaka, and N. Sugitsue, “Application of support vector machine to rapid classification of uranium waste drums using low-resolution γ-ray spectra,” Appl. Radiat. Isot., vol. 104, pp. 143–146, 2015.

L. Didactic, Detecting γ radiation with a scintillation counter, Leybold Didactic, 2012.

S. Raschka, Python Machine Learning. Packt Publishing, 2015.




DOI: https://doi.org/10.15408/fiziya.v3i1.16180 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


Web Analytics Made Easy - StatCounterView My Stats

Flag Counter

Creative Commons License

This work is licensed under a CC-BY-SAÂ