Optimasi dan Evaluasi Mikroemulsi Minyak Prepupa Black Soldier Fly (Hermetia illucens)

Authors

  • Adhitya Jessica Fakultas Farmasi, Universitas Andalas, Kampus Limau Manis, Padang, 25163. Indonesia https://orcid.org/0000-0002-5935-6680
  • Erizal Zaini Fakultas Farmasi, Universitas Andalas, Kampus Limau Manis, Padang, 25163. Indonesia
  • Nabila Maulidya Khairunnisa Program Sarjana, Fakultas Farmasi, Universitas Andalas, Kampus Limau Manis, Padang, 25163. Indonesia

DOI:

https://doi.org/10.15408/pbsj.v7i2.42172

Keywords:

Hermetia illucens, Black Soldier Fly, Microemulsion, Optimation, Formula

Abstract

Hermetia illucens, commonly known as the Black Soldier Fly (BSF), is an insect rich in fatty acids and has potential for use as an active cosmetic ingredient, particularly for anti-aging applications. To ensure stability and achieve optimal efficacy, BSF prepupal oil was formulated into a microemulsion system. This study aimed to optimize the microemulsion formulation of BSF prepupal oil using a combination of Tween 80 as a surfactant and PEG 400, Pluronic 127, and ethanol as candidate of cosurfactants, and to evaluate its physicochemical characteristics and stability. The formulation process began with the selection of an appropriate surfactant–cosurfactant combination, followed by optimization of the selected surfactant–cosurfactant concentrations using the Simple Lattice Design method in Design Expert® 13 software. The optimized formulations were then evaluated for organoleptic properties, pH, viscosity, transmittance, globule size, and stability through temperature cycling and centrifugation tests. The results showed that the combination of Tween 80 and PEG 400 produced a stable microemulsion with high clarity. The optimal formulation (F12) consisted of 55.56% Tween 80, 22.22% PEG 400, and 11.11% BSF prepupal oil, exhibiting a transmittance of 98.30 ± 0.26%, a pH range of 5.19–5.70, a viscosity of 375 ± 0.54 cP, and a globule size of 550.71 ± 0.32 nm. This formulation remained stable under thermal stress and accelerated centrifugation without phase separation. Based on these findings, BSF prepupal oil can be effectively formulated into a stable microemulsion and shows potential for further development as an active cosmetic ingredient.

References

Almeida, C., Rijo, P., Rosado, C., 2020. Bioactive Compounds from Hermetia Illucens Larvae as Natural Ingredients for Cosmetic Application. Biomolecules. 10, 976. https://doi.org/10.3390/biom10070976.

Arifin, I., Muddin, M.I., Kabur, S.R., Shabrina, A., 2024. Stabilitas Kimia Mikroemulsi Minyak Biji Pala (Myristica Fragrans) dengan Tween 80 dan Etanol Sebagai Surfaktan dan Kosurfaktan. Cendekia Eksakta. 9, 46–52.

Becher, P., 1993. Review of:‘The Fundamentals of Stability Testing’(IFSCC Monograph No. 2). International Federation of Societies of Cosmetic Chemists. Micelle Press, Cranford, NJ, 1992. pp. 23. $10.00 (paper).(ISBN 1-870228-06-05). J. Dispers. Sci. Technol. 14, 514.

Chen, L., Tan, F., Wang, J., Liu, F., 2012. Microemulsion: a novel transdermal delivery system to facilitate skin penetration of indomethacin. Die Pharm. Int. J. Pharm. Sci. 67, 319–323.

Chou, T., Nugroho, D.S., Cheng, Y., Chang, J., 2020. Development and Characterization of Nano-emulsions Based on Oil Extracted from Black Soldier Fly Larvae. Appl. Biochem. Biotechnol. 191, 331–345. https://doi.org/10.1007/s12010-019-03210-y.

Christinne, N., Amalia, E., 2023. Senyawa Peningkat Penetrasi pada Sistem Penghantaran Obat Topikal Berdasarkan Lipofilisitas Senyawa Obat. Maj. Farmasetika 8, 386–401. https://doi.org/https://doi.org/10.24198/mfarmasetika.v8i5.47418.

Eastoe, J., Robinson, B.H., Steytler, D.C., 1990. Influence of pressure and temperature on microemulsion stability. J. Chem. Soc. Faraday Trans. 86, 511–517.

Ferreira, A.C., Sullo, A., Winston, S., Norton, I.T., 2020. Influence of ethanol on emulsions stabilized by low molecular weight surfactants. J. Food Sci. 85, 28–35.

Fukuda, I.M., Pinto, C.F.F., Moreira, C.D.S., Saviano, A.M., Laurenco, F.R., 2018. Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). Brazilian J. Pharm. Sci. 54, 1–16. https://doi.org/10.1590/s2175-97902018000001006.

Golwala, P., Rathod, S., Patil, R., 2020. Effect of cosurfactant addition on phase behavior and microstructure of a water dilutable microemulsion. Colloids Surfaces B Biointerfaces 186, 110736.

Gunstone, F.D., Harwood, J.L., 2007. The lipid handbook with CD-ROM. CRC press.

Hasan, A., Farooqui, H., 2021. A review on role of essential oil as penetration enhancer in transdermal drug delivery system. Syst. Rev. Pharm 12, 439–444.

Iradhati, A.H., Jufri, M., 2017. Formulation and physical stability test of griseofulvin microemulsion gel. Int J Appl Pharm 9, 22–27.

Jamali, N., Moghimipour, E., Hedayatipour, N., 2024. Preparation, Characterization, and Skin Permeation Evaluation of Naproxen Microemulsions for Transdermal Delivery. Jundishapur J. Nat. Pharm. Prod. 19. https://doi.org/10.5812/jjnpp-145137.

Jamir, Y., Bhushan, M., Sanjukta, R., Robindro, S.L., 2024. Plant‐based essential oil encapsulated in nanoemulsions and their enhanced therapeutic applications: An overview. Biotechnol. Bioeng. 121, 415–433. https://doi.org/10.1002/bit.28590.

Jessica, A., Yasa, S.W., Zaini, E., Fitriani, L., 2024. Increased Dissolution Rate of Aceclofenac by Formation of Multicomponent Crystals with L-Glutamine. Int. J. Appl. Pharm. 45–52. https://doi.org/10.22159/ijap.2024.v16s1.09.

Kampa, J., Frazier, R., Rodriguez-Garcia, J., 2022. Physical and chemical characterisation of conventional and nano/emulsions: Influence of vegetable oils from different origins. Foods 11, 681.

Lachman, L., Lieberman, H.A., Kanig, J.L., 1976. The theory and practice of industrial pharmacy. Lea & Febiger Philadelphia.

Lan, P.T.P., Quan, N.H., Ngoan, L.D.,Hong, T.T.T., Tram, N.D.Q., 2022. Amino acid and fatty acid compositions of black soldier fly larvae (Hermetia illucens) fed by tofu by-products in Viet Nam.

Lawrence, M.J., Rees, G.D., 2000. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 45, 89–121.

Leite, P.Â. de S.M., Miguel, N.C. de O., Pierre, M.B.R., 2023. Microemulsions Improve Topical Protoporphyrin IX (PpIX) Delivery for Photodynamic Therapy of Skin Cancer. Brazilian J. Pharm. Sci. 59. https://doi.org/10.1590/s2175-97902023e21920.

Maharini, M., Rismarika, R., Yusnelti, Y., 2020. Pengaruh konsentrasi PEG 400 sebagai kosurfaktan pada formulasi nanoemulsi minyak kepayang. Chempublish J. 5, 1–14. https://doi.org/10.22437/chp.v5i1.7604.

Mauludin, R., Mohamad, S.F.B., Suciati, T., 2014. Formulation and characterization of ascorbyl palmitate loaded o/w microemulsion. Int. J. Pharm. Pharm. Sci. 6, 294–298.

Mendonça, D.V.C., Lage, L.M.R., Lage, D.P., Chávez-Fumagalli, M.A., Ludolf, F., Roatt, B.M., Menezes-Souza, D., Faraco, A.A.G., Castilho, R.O.,

Tavares, CA.P., 2016. Poloxamer 407 (Pluronic® F127)-based polymeric micelles for amphotericin B: In vitro biological activity, toxicity and in vivo therapeutic efficacy against murine tegumentary leishmaniasis. Exp. Parasitol. 169, 34–42.

Muangrat, R., Pannasai, S., 2024. Exploring the potential of black soldier fly larvae oil: Supercritical CO2 extraction, physicochemical analysis, antioxidant properties, shelf life, and keratinocyte growth inhibition. J. Agric. Food Res. 15, 101008. https://doi.org/10.1016/j.jafr.2024.101008.

Nahdhia, N., Syamsur R.M.A., Hendradi, E., Teguh, W.R., 2024. Application of the Simplex Lattice Design Method to Determine the Optimal Formula of Diclofenac Sodium Nanoemulsion.

Pharmaheri, A.P., Umar, S., Lucida, H., 2024. IAI SPECIAL EDITION: Formulation and evaluation of piperine-loaded ultra-small unilamellar carrier. Pharm. Educ. 24, 52–57.

Phongpradist, R., Semmarath, W., Kiattisin, K., Jiaranaikulwanitch, J., Chaiyana, W., Chaichit, S., Phimolsiripol, Y., Dejkriengkraikul, P., Ampasavate, C., 2023. The in vitro effects of black soldier fly larvae (Hermitia illucens) oil as a high-functional active ingredient for inhibiting hyaluronidase, anti-oxidation benefits, whitening, and UVB protection. Front. Pharmacol. 14, 1–14. https://doi.org/10.3389/fphar.2023.1243961.

Ravichandran, V., Ravichandran, V., Lee, M., Nguyen C.T.G., Shim, M.S., 2021. Polysorbate-based drug formulations for brain-targeted drug delivery and anticancer therapy. Appl. Sci. 11, 9336. https://doi.org/10.3390/app11199336.

Salwa, S., Abd Kadir, M. Bin, Sulistyowati, Y., 2020. Formulasi dan Evaluasi Sediaan Spray Gel Tabir Surya Fraksi Etil Asetat Daun Cempedak (Artocarpus integer (Thunb.) Merr.) dengan Kombinasi Basis HPMC dan Karbopol 940. J. Mhs. Kesehat. 2, 12. https://doi.org/10.30737/jumakes.v2i1.1222.

Sapra, B., Thatai, P., Bhandari, S., Sood, J., Jindal, M., Tiwary, A.K., 2014. A critical appraisal of microemulsions for drug delivery: part II. Ther. Deliv. 5, 83–94.

Shabrina, A., Pratiwi, A.R., Muurukmihadi, M., 2020. Stabilitas Fisik Dan Antioksidan Mikroemulsi Minyak Nilam Dengan Variasi Tween 80 Dan PEG 400. Media Farm. 16, 185. https://doi.org/10.32382/mf.v16i2.1720.

Siqhny, Z.D., Azkia, M.N., Kunarto, B., 2020. Karakteristik nanoemulsi ekstrak buah parijoto (Medinilla speciosa blume). J. Teknol. Pangan dan Has. Pertan. 15, 1–10.

Suryati, T., Julaeha, E., Farabi, K., Ambarsari, H., Hidayat, A.T., 2023. Lauric Acid from the Black Soldier Fly (Hermetia illucens) and Its Potential Applications. Sustainability 15, 10383. https://doi.org/10.3390/su151310383.

Taher, S.S., Al-Kinani, K.K., Hammoudi, Z.M., Ghareeb, M.M., 2022. Co-surfactant effect of polyethylene glycol 400 on microemulsion using BCS class II model drug. J. Adv. Pharm. Educ. Res. 12, 63–69. https://doi.org/10.51847/1h17TZqgyI.

Taylor, K.M.G., 2022. Emulsions and creams. in Pharm. Sci. Dos. Form Des. 6th editio. Elsevier. Available at: https://elsevier-elibrary.com/contents/fullcontent/58070/epubcontent_v2/OEBPS/xhtml/CHP027.html.

Ting, T.C., Amat R.N.F., Che Z.N.A., Abdullah, N.H., Mohamad, M., Shoparwe, N.F., Mhd R.S.F., Aimi, Z., Abdul H.Z.A., Yusof, A.H., 2020. Development and Characterization of Nanoemulgel Containing Piper betle Essential Oil as Active Ingredient. IOP Conf. Ser. Earth Environ. Sci. 596, 012032. https://doi.org/10.1088/1755-1315/596/1/012032.

Downloads

Published

2025-12-31

Issue

Section

Articles

How to Cite

Optimasi dan Evaluasi Mikroemulsi Minyak Prepupa Black Soldier Fly (Hermetia illucens). (2025). Pharmaceutical and Biomedical Sciences Journal (PBSJ), 7(2), 170-181. https://doi.org/10.15408/pbsj.v7i2.42172