

AL-KAUNIYAH: Jurnal Biologi, 19(1), 2026, 89-98 Website: http://journal.uinjkt.ac.id/index.php/kauniyah

P-ISSN: 1978-3736, E-ISSN: 2502-6720

STABILITY OF MORPHOPHYSIOLOGICAL CHARACTERS, TUBER YIELD, AND FBPase GENE EXPRESSION IN TRANSGENIC POTATO CULTIVAR IPB-CP3

STABILITAS KARAKTER MORFOFISIOLOGI, HASIL UMBI, DAN EKSPRESI GEN FBPase TANAMAN KENTANG KULTIVAR IPB-CP3 TRANSGENIK

Malik Nuris Suaidi¹, Aris Tjahjoleksono^{1,2,3}, M. Miftahudin^{1,2,3}*

¹Biotechnology Graduate Program, Graduate School, Kamper St, IPB University, Darmaga, Bogor, 16680 ²Department of Biology, Faculty of Mathematics and Natural Sciences, Agathis St, IPB University, Darmaga, Bogor, 16680

³Biotech Center, International Research Institute for Advanced Technology, Kamper St, IPB University, Darmaga, Bogor, 16680

*Corresponding author: miftahudin@apps.ipb.ac.id

Submitted: 23 December 2024; Revised: 4 March 2025; Accepted: 12 September 2025

Abstract

Potatoes are an essential agricultural commodity that needs to be genetically improved to increase productivity and meet industrial needs. The research aimed to evaluate the stability of the morpho-physiological characters, tuber yield, and transgene expression of transgenic potato cultivar IPB-CP3 harboring the FBPase gene in the G_0 and G_1 generations. The study was conducted by growing transgenic plants in a greenhouse and analyzing plant morpho-physiological characters, tuber yield, and gene expression. The results showed that transgenic plants had higher values in stem diameter (32.7–50.8%), number of leaves (33.9–41.2%), biomass dry weight (14.4–36.2%), photosynthetic rate (25.2–28.25%), and tuber weight (42.6–196.0%) than non-transgenic plants. However, there was no significant difference in plant height characters between the transgenic and non-transgenic plants. Transgenic plants consistently expressed the FBPase gene at higher level than the non-transgenic plants in the G_0 and G_1 generations. The research results suggest that overexpression of the FBPase gene increases plant growth and tuber yield. This finding implies agricultural practices, particularly in the context of crop improvement through genetic engineering.

Keywords: FBPase gene; Gene expression; IPB-CP3; Photosynthetic

Abstrak

Kentang merupakan komoditas pertanian penting yang harus terus diperbaiki sifat genetiknya untuk meningkatkan produktivitas dan memenuhi kebutuhan industri. Penelitian ini bertujuan untuk mengevaluasi stabilitas karakter morfo-fisiologi, hasil umbi, dan ekspresi transgen pada kentang transgenik kultivar IPB-CP3 yang mengandung gen FBPase pada generasi G_0 dan G_1 . Penelitian dilakukan dengan menanam transgenik di rumah kaca dan menganalisis karakter morfo-fisiologi dan hasil umbi, serta menganalisis ekspresi transgen di laboratorium. Hasil penelitian menunjukkan bahwa tanaman transgenik memiliki nilai lebih tinggi pada karakter diameter batang (32.7–50.8%), jumlah daun (33.9–41.2%), bobot kering biomassa (14.4–36.2%), laju fotosintesis (25.2–28.25%), serta bobot umbi (42.6–196.0%) dibandingkan tanaman nontransgenik. Namun tidak terdapat perbedaan nyata pada karakter tinggi tanaman antara tanaman transgenik dan non transgenik. Tanaman transgenik secara konsisten mengekspresikan gen FBPase lebih tinggi dibandingkan tanaman non-transgenik pada generasi G_0 dan G_1 . Hasil penelitian menunjukkan bahwa ekspresi berlebih dari gen FBPase meningkatkan pertumbuhan tanaman dan hasil umbi. Temuan ini berimplikasi pada praktik pertanian, khususnya dalam konteks perbaikan tanaman melalui rekayasa genetika.

Kata Kunci: Ekspresi gen; Fotosintesis; Gen FBPase; IPB-CP3

Permalink/DOI: http://dx.doi.org/10.15408/kauniyah.v19i1.43558

INTRODUCTION

Potatoes, the third most important crop after rice and wheat in the world, were increasingly recognized as an important commodity in the food and horticulture industry in Indonesia since 2010s (Kiloes et al., 2015). The demand for potatoes is rising, driven by the increasing population, changing lifestyles, and the need for an alternative carbohydrate source, especially for people who want a healthy diet or who have special needs, such as diabetics. However, the area of potato cultivation has decreased by 17.10% since 2022, and 2023's BPS data shows a decrease in potato production from 1.3 tons in 2021 to 1.2 tons in 2023 (The Central Bureau of Statistics of Indonesia (BPS), 2024). The production of potatoes is still facing challenges due to factors like groundwater availability, fertilization systems, irrigation, and planting season constraints (Minda et al., 2019; Larkin et al., 2021). Enhancing potato productivity through genetic engineering for high-yielding cultivars is one of the approaches to increase production and fulfill consumer and industrial demand. The approach could target several plant characteristics, such as improving photosynthesis efficiency, agronomic traits, and tuber yields (Fover et al., 2017; Guo et al., 2018; Hameed et al., 2018).

The improvement of yield-related traits, such as morpho-physiological and agronomic characteristics of the plants, could be achieved through the increase of photosynthetic activity. One of the enzymes that plays a crucial role in photosynthesis is fructose 1,6-bisphosphatase (FBPase), which involves the conversion of fructose 1,6-bisphosphate to fructose 6-phosphate. The conversion could be part of the carbon reduction pathway of the Calvin cycle in the chloroplasts, leading to the starch biosynthesis and the sucrose biosynthesis pathway in the cytosol (Daie, 1993; Li et al., 2020). Previous research showed that overexpression of the FBPase gene originated from Arabidopsis increased sucrose synthesis in the cytosol and growth of transgenic Arabidopsis (Cho et al., 2012) and Oryza coarctata (Mukherjee et al., 2021). Additionally, the expression of the FBPase gene from cyanobacteria increased tuber yields in potatoes (Fatahillah et al., 2016; Olivah, 2019).

The plant growth and yield will be in maximum condition when supported by good root characteristics. Roots are vital for water and nutrient absorption and plant growth. Most vegetable plants, such as potatoes, are sensitive to drought when soil moisture drops below 20%, leading to disrupted photosynthesis, smaller leaves, stunted growth, reduced tuber yield, and quality (Gervais et al., 2021). The root characteristics supporting water absorption under a limited water supply are essential for better plant growth and production. The Citrullus lanatus-Root Activating Number 1 (ClRan1) gene from xerophyte wildtype watermelon encodes the Ran1-GTPase enzyme related to root growth. Overexpression of the gene in Arabidopsis increased root meristem activity (Wang et al., 2006; Akashi et al., 2011). In addition, according to Xu and Cai (2014), Ran-GTPase protein plays a role in plant development and mediates plant responses to the environment. Research conducted by Akashi et al. (2016) found that the expression of the ClRan1 gene at the root tip increased primary root growth in *Arabidopsis* plants at the seedling phase.

Previous research on introducing FBPase and ClRan1 genes into potato cv IPB-CP3 mediated by Agrobacterium tumefaciens strain EHA105 has been conducted by Wijayanti (2022). The expression of the gene under the control of a strong promoter affects the growth and development of the plants in the G₀ clonal generation. However, the stability analysis of the morpho-physiological characters, tuber yields, and gene expression of FBPase in the G₁ generation has yet to be carried out. Therefore, this study aims to study the stability of morphophysiological characters, tuber yields, and gene expression of FBPase in the G_0 and G_1 generations of transgenic potato cv IPB CP3.

MATERIALS AND METHODS

Young plants of a non-transgenic IPB-CP3 potato clone (C3NT) and four transgenic IPB-CP3 clones (C3FB1, C3FB2, C3FB3, C3FB4) containing the FBPase/ClRan1 gene were used in this research (Wijayanti, 2022). The primers used for transgene integration and expression analyses are listed in Table 1.

Table 1. List of primers used in transgene integration and expression analysis

Purpose	Primer names	Primer sequences	Annealing temperature	Expected size of PCR
			(°C)	bands (bp)_
Transgene integration	Act-F	ATGGCAGATGCCGAGGATAT	55	550
analysis	Act-R	CAGTTGTGCGACCACTTGCA		
	rbcS-F	5'-TGAGATAAGGACGAGTGAGG-3'		581
	FBPase_65R	5'-TGCCCACTTCTTCACCGATA-3'		
Transgene expression	Tact-qF	ACATCGTCCT TAGTGGTGGA	58	226
analysis	Tact-qR	GTGGACAATGGAAGGACCAG		
	FBPase-SKqF	5'-GTCCGTCTGATCAGCGATG-3'		161
	FBPase-SKqR	5'-TAGATCAGCTGGCCTTGGAA G-3'		

Propagation and Planting of IPB-CP3 Lines

Potato IPB-CP3 lines from G₀ generation were propagated in MS media according to Murashige and Skoog (1962) at 24 to 25 °C for 4 weeks. Four-week-old G₀ plantlets (WAP) were moved and placed in a greenhouse for one week for acclimatization. Plantlets were then planted in cocopeat media to produce mother stock plants. After 4 WAP, the top branches of the mother plants were cut and planted on cocopeat media for rooting. After two weeks, the rooted seedlings of one nontransgenic and four transgenic potato cv. IPB-CP3 were moved to polybags containing cocopeat media for the experiment that was carried out in the greenhouse, which was located in CV Bumi Agro Technology Field Station, Cisarua, Bandung, at 1,350 masl with an average daily temperature of 14-21 °C. The single-factor experiment was arranged in a completely random design with 15 replications. Each replication consisted of 5 plants. The tubers produced from G₀ plants, called G₁ seeds, were planted in the greenhouse, the same as the G_0 plants. The grown plants from G_1 seeds were observed using the same procedure as the G_0 plants.

Morpho-physiological Characters and Tuber Yield Observation

Morphological characters of non-transgenic and transgenic plants, including the height and diameter of the main stem, the number of nodes, and the number and width of leaves, were observed every 2 weeks from the age of 5–9 WAP. Physiological characteristics, namely photosynthetic rate, stomatal conductance, and the CO₂ intercellular were measured 40 days after planting (DAP) using the Portable Photosynthesis System LICOR type LI-6400XT (LI-COR, USA). Root length and dry weight were observed at 47 DAP. The weight and number of tubers were observed on the day of harvesting.

FBPase Transgene Integration Analysis

Total DNA was isolated from plantlets (3 DAP) using the modified Suharsono (2002) method, which included an additional heat block step and 2% CTAB in the extraction buffer. DNA quantity was measured using a Jenway 7315 UV-Vis Spectrophotometer (Fisher Scientific, UK). The DNA was then used as a PCR template to analyze DNA integrity using primer pairs Act-F and Act-R from the Actin gene (Table 1). Analysis of transgene integration stability in the potato plant genome using specific primers rbcS-F and FBPase_65R for FBPase. PCR was carried out under the following condition: genomic DNA was denatured at 94 °C for 5 min, followed by 35 cycles of amplification (95 °C for 45 s, 55 °C for 45 s, and 72 °C for 1 min), and finally 5 min at 72 °C.

FBPase Gene Expression Analysis

Gene expression analysis was performed by isolating total RNA using Trizol (Invitrogen, USA). cDNA was amplified by PCR using SensiFASTTM cDNA synthesis kit (Bioline, UK), procedure with a two-step method. Real-time PCR was performed using the Quant Studio 5 (Thermo-Fisher Sci, USA) RT-PCR machine with a modified SensiFASTTM SYBR® Lo-ROX Kit (Bioline CAT: BIO-94020, UK), where the primer volume was adjusted to 0.3 µL, along with pairs of primers as listed in Table 1. The thermal program was set as follows: 55 cycles of amplification (95 °C for 10 s, 58 °C for 30 s, and 72 °C for 40 s) and finally 20 s at 60 °C. Actin Ct value was used as the internal standard and reference gene for expression analysis. The relative expression of FBPase genes across genotypes was calculated using the Livak $2^{-\Delta\Delta Ct}$ method (Livak & Schmittgen, 2001).

Data Analysis

Morpho-physiological data, tuber yields, and gene expression were tabulated and graphed using Microsoft Office Excel 2013 and then analyzed with One-way ANOVA using the IBM SPSS Statistics version 25. If the genotypes significantly affected the observed variables, it was then posthoc tested with the Duncan Multiple Range Test (DMRT) at a= 0.05.

RESULTS

Integration of the FBPase Genes on Transgenic Plants

The total DNA of plants was successfully isolated with exemplary integrity, characterized by the successful Actin gene PCR amplification using the total DNA as a template (Figure 1a). The amplicon formation from the amplified Actin genes indicates that the total DNA of plants was not degraded. Integration of the FPBase gene was verified with the PCR amplification of the transgene in the plant DNA using a pair of primers rbcS-F and FBPase_65R. The rbcS promoter was used in the T-DNA recombinant construct introduced to the potato genome. The rbcS-F primer was designed from the rbcS promoter sequence, and the FBPase 65R primer was designed from the FBpase gene sequence. Amplification using both primers will amplify the FBPase gene inserted in the plant genome. The results showed that the transgene could be amplified in all transgenic potatoes. Still, it was not amplified in non-transgenic potatoes (Figure 1b), indicating the successful integration of the FBPase gene into the plant genome. This integration confirms the stability of the transgene in the G₁ generation of transgenic potato plants.

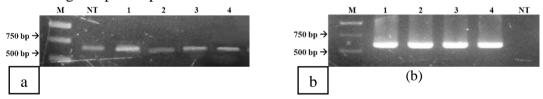


Figure 1. Amplification of Actin (a) and FBPase genes (b) in transgenic potato IPB-CP3 G₁ generation. M= 1kb DNA ladder, NT= non-transgenic potato cultivar IPB-CP3 and 1-4= transgenic potato cultivar IPB-CP3, namely C3FB1, C3FB2, C3FB3, C3FB4, respectively

Morphological Characters

Transgenic and non-transgenic plants were grown in polybags containing cocopeat media. Morphological characteristics were then observed as described in the methods. The results showed that the transgenic plants had significantly higher stem diameter, leaf number, and main stem node number than those of the non-transgenic plants. However, the plant height of the transgenics was not significantly different from the non-transgenic plants in both G_0 and G_1 generations (Table 2). Interestingly, plant height and other morphological characters, such as stem diameter, leaf number, and main stem node number, were higher in G_1 compared to the G_0 generation.

Table 2. Morphological characteristics of transgenic potato cv. IPB-CP3 overexpressing the FBPase/ClRan1 gene at 9 weeks after planting

Lines —	Plant hei	Plant height (cm)		Stem diameter (cm)		Number of nodes		Number of leaves	
Lines	G_0	G_1	G_0	G_1	G_0	G_1	G_0	G_1	
C3NT	34.56	76.76	0.33 ^a	0.62a	10.00 ^a	10.40 ^a	9.60 ^a	10.20 ^a	
C3FB1	39.89	80.44	$0.47^{\rm b}$	0.60^{a}	12.00 ^{ab}	13.60^{b}	12.00^{ab}	13.60^{b}	
C3FB2	43.03	80.37	$0.55^{\rm b}$	0.83^{b}	14.20^{b}	15.40°	14.20^{b}	15.40^{c}	
C3FB3	40.53	78.40	$0.47^{\rm b}$	$0.91^{\rm b}$	11.60 ^{ab}	13.00^{b}	11.60^{ab}	13.00^{b}	
C3FB4	39.58	76.14	$0.50^{\rm b}$	$0.95^{\rm b}$	13.60 ^b	15.60°	13.60 ^b	15.60°	

Note: Data labelled with the same letter in the same column are not significantly different in Duncan's test with α = 0.05; C3NT= non-transgenic plants; C3FB1-4= transgenic plants

Root length and biomass weight were observed at harvest time. Transgenic plants had longer root lengths and higher biomass weights than controls (Table 3). Transgenic G₀ generation plants had a higher fresh weight compared to non-transgenic with an average of 114.65 g, while the fresh weight of the G₁ generation was 197.74 g.

Table 3. Fresh and dry weight biomass and root length of transgenic potato cv. IPB-CP3

overexpressing the FBPase/ClRan1 gene at 11 weeks after planting

T :	Biomass fres	Biomass fresh weight (g)		Biomass dry weight (g)		Root length (cm)	
Lines	G_0	G_1	G_0	G_1	G_0	G_1	
C3NT	97.64ª	135.84 ^a	8.69 ^a	10.32 ^a	10.47 ^a	21.08 ^a	
C3FB1	110.74^{ab}	183.23 ^b	9.70^{a}	14.69 ^{ab}	14.61a	28.08^{b}	
C3FB2	111.59 ^{ab}	186.49 ^b	10.77^{a}	13.01 ^{ab}	$19.57^{\rm b}$	29.68^{b}	
C3FB3	116.99 ^b	215.68 ^b	9.43^{a}	15.24 ^b	20.40^{b}	28.91^{b}	
C3FB4	119.26 ^b	205.55^{b}	9.87^{a}	13.30^{b}	19.29 ^b	24.28^{ab}	

Note: Data labelled with the same letter in the same column are not significantly different in Duncan's test with $\alpha = 0.05$; C3NT= non-transgenic plants; C3FB1-4= transgenic plants

Physiological Characters

The photosynthesis rate in all transgenic plants was significantly higher than that of nontransgenic plants in both generations (Table 4). However, the higher photosynthesis rate in transgenic plants compared to the control plants was not in line with the response pattern of intercellular CO₂, which was not significantly different among genotypes in both generations. Stomatal conductance of the transgenic plants showed a higher value than that of non-transgenic plants, but only a significant difference in the G_1 generation.

Table 4. Physiological characteristics of transgenic IPB CP3 potato plants overexpressing the

FBPase/ClRan1 gene 40 days after planting

Lines		Photosynthesis rates (µmol H ₂ Om ⁻² s ⁻¹)		Stomatal conductance (mol H ₂ Om ⁻² s ⁻¹)		CO ₂ intercellular (µmol CO ₂ mol ⁻¹)	
	G_0	G_1	G_0	G_1	G_0	G_1	
C3NT	22.86a	19.31a	1.38	1.30a	340.27	347.69	
C3FB1	28.57^{b}	24.66^{bc}	1.82	2.01^{b}	334.02	346.25	
C3FB2	28.90^{b}	25.42^{c}	2.02	2.20^{b}	337.31	347.28	
C3FB3	28.23^{b}	24.47^{b}	1.90	2.31^{b}	337.26	349.86	
C3FB4	28.78^{b}	24.44 ^b	1.81	2.44^{b}	334.49	348.13	

Note: Data labelled with the same letter in the same column are not significantly different in Duncan's test, α= 0.05; NT= non-transgenic plants; FB= transgenic plants

Tuber Yield

The number of tubers and tuber weights of transgenic plants were significantly higher than those of non-transgenic plants, showing the impressive potential of transgenic plants. Transgenic plants produced a two to threefold increase in tuber weight compared to non-transgenic plants (Table 5). The tubers of transgenic and non-transgenic lines had similar oval shapes (Figure 2). However, transgenic potatoes were larger than non-transgenic potatoes, further highlighting transgenic plants' potential.

Table 5. Tuber yield of non-transgenic and transgenic potato IPB-CP3 potato overexpressing the FRPase gene

I DI u	se gene				
Lines —	Number of tu	bers per plant	Tubers weight per plant (g)		
	G_0	G_1	G_0	G_1	
C3NT	3.0^{a}	5.0a	13.70 ^a	59.12a	
C3FB1	$6.7^{\rm b}$	6.9^{b}	39.72^{bc}	70.02^{ab}	
C3FB2	7.9^{b}	8.1 ^b	29.60 ^b	101.98 ^b	
C3FB3	6.4^{b}	8.6^{b}	39.70^{bc}	94.42^{ab}	
C3FB4	9.0^{b}	7.5^{b}	53.20°	70.76^{ab}	

Note: Data labelled with the same letter in the same column are not significantly different in Duncan's test, α= 0.05; C3NT= non-transgenic plants; C3FB1–4= transgenic plants

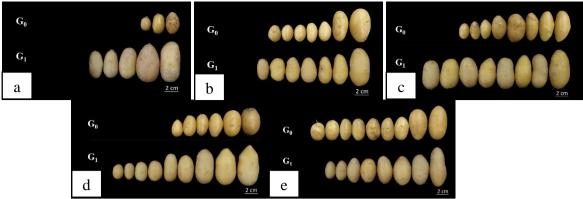


Figure 2. Tuber shape and size of non-transgenic and transgenic potato IPB-CP3, non-transgenic (C3NT) (a), C3FB1 (b), C3FB2 (c), C3FB3 (d), and C3FB4 (e)

Gene Expression Analysis

The expression of the FBPase gene in all G₀ and G₁ plants of the transgenic plants was higher than in non-transgenic plants (Figure 3). The gene expression in G₀ and G₁ of the C3FB4 transgenic line showed a significant 23- and 3.04-fold higher over the non-transgenic plant. The gene expression level varied among transgenic lines, but it had a similar expression pattern between G₀ and G₁ generations.

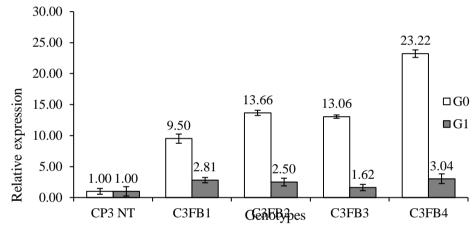


Figure 3. The relative expression of the FBPase gene in the transgenic potato cultivar IPB-CP3. C3NT= non-transgenic plant; C3B1–4= transgenic plants. The error bar indicates standard error

DISCUSSION

The molecular confirmation of putative transgenic plants was achieved using the PCR technique. Actin gene, as a housekeeping gene, is present in every developmental stage of plants and almost all plant tissues. This ubiquity of the Actin gene makes it an invaluable marker for the presence and integrity of genomic DNA. The primers used to amplify the Actin gene of potato plants were explicitly designed to amplify the potato DNA genome and to be absent in the DNA plasmids when used as the DNA template, as the plasmid did not contain the Actin gene. The result showed that the Actin primer pair successfully amplified the potato DNA genome both in non-transgenic and transgenic plants (Figure 1a), indicating that the isolated DNA that will be used to verify the integration of the FBPase gene in the potato DNA genome is in good integrity. The DNA was then used as a template for PCR amplification using the specific rbcS-F and FBPase 65R primer pairs. The rbcS-F primer was designed from the rbcS promoter sequence upstream of the FBPase gene, while the FBPase_65R primer was designed from the FBPase gene sequence. Therefore, successfully amplifying the DNA segment between the two primers will indicate the successful integration of the FBPase gene in the potato genome. The PCR results showed that all plant DNA samples were amplified at the transgene target, except for the non-transgenic DNA (Figure 2b), confirming that the FBPase gene was stably inserted in the potato DNA genome.

Introducing the FBPase gene in the potato cultivar IPB-CP3 affects several morphophysiological characters observed in this study. The measurement of photosynthesis parameters of non-transgenic and transgenic plants using Licor LI-6400XT (LI-COR, USA) in a greenhouse showed that the photosynthesis rates of transgenic plants were 23.5-26.4% higher than those of nontransgenic plants (Table 4). The research by Simkin et al. (2017) demonstrated that increased fructose 1,6-bisphosphate aldolase (FBPA) expression in *Arabidopsis* led to a higher plant photosynthesis rate, stimulating higher biomass production. As photosynthesis increases, the CO2 demand of plants also increases, which is facilitated by the wide stomatal openings for gas diffusion. In this research, the average stomatal conductance of transgenic plants was 1.37 and 1.72 times higher than that of nontransgenic plants in the G_0 and G_1 generations, respectively; this indicates that the high stomatal conductance in transgenic plants facilitates the diffusion of CO₂ into the chloroplasts. The effect of FBPase overexpression on the photosynthesis rate in potatoes has also been reported by Fatahillah et al. (2016), Susilawati (2020), and Wijayanti (2022), showing a positive correlation between FBPase activity and enhanced photosynthetic efficiency.

Intercellular CO₂ increases with increasing photosynthesis rate and stomatal conductance (Taylor & Long, 2017). However, this study obtained higher intercellular CO₂ in plants with relatively low photosynthesis rates. According to Long and Bernacchi (2003), some factors cause the photosynthesis rate to have a lower value even with high intercellular CO₂ values, including Rubisco activity, RuBP regeneration, and triose-phosphate (TP) utilization. Khamis et al. (2020) also reported that a higher photosynthesis rate occurs in corn plants despite low intercellular CO₂ values.

Carbohydrates produced during photosynthesis (mainly glucose) are used in various metabolic processes to produce energy, form sucrose, and build carbohydrate-based plant structures. With increased FBPase activity, more carbohydrates can be synthesized and used for plant growth, increasing tissue mass (e.g., fresh weight) and forming physical plant structures (e.g., stem diameter). Photosynthesis rate is one of the factors that significantly influences plant biomass (Conner, 2007) and plant growth. In this study, we reported that transgenic plants overexpressing FBPase have higher stem diameter, number of leaves, number of nodes, fresh and dry biomass, and tuber yields. Previous studies on potato cultivar Nooksack and IPB-CP3 also reported that potatoes with FBPase gene overexpression showed higher plant biomass, two times heavier than control plants (Fatahillah et al., 2016; Wijayanti, 2022). Research by Yan-yan et al. (2022) on canola and tobacco obtained an increase in photosynthesis rate, stem diameter, and root length in transgenic plants expressing cyFBPase. From morpho-physiological data collected from the G₀ and G₁ plants in this research, we conclude that the morpho-physiological characters are stable between the two generations.

The research analyzed the stability of the FBPase gene expression in both G_0 and G_1 plants. All transgenic plants expressed the gene higher level than that in transgenic plants. The relative expression of the gene in G₀ transgenic plants varied from 9.50 to 23.22 fold in the non-transgenic plant, whereas the relative expression in the G₁ generation varied from 1.62 to 3.04 fold. The variation of the transgene expression among the transgenic lines is influenced by promoter selection, insertion position, and environmental factors. Iglesias et al. (1997) reported that gene stability can be influenced by the gene's position relative to the telomere. Insertions near the telomere tend to be more stable in their expression, while insertions in the intercalary or paracentromeric regions show more unstable expression. In this research, the expression of the FBPase gene is controlled by the rbcS promoter, a promoter from a small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RbcS). The mode of action of the rbcS promoter is light-dependent and tissue-specific, primarily regulating gene expression in green tissues such as leaves and stems. It achieves this through lightresponsive cis-acting elements, including the I-box and G-box, which interact with specific transcription factors to activate transcription in response to light (Tanabe et al., 2015).

The variation in FBPase gene relative expression between G₀ and G₁ generations of the transgenic lines may also be related to differences in light intensity received by plants during the experiment in the greenhouse. The RbcS gene exhibits a light-dependent expression mechanism that is vital in photosynthetic tissues. According to Tanabe et al. (2015), the expression of IbRbcS1 is induced within three hours of light exposure. It continues to increase throughout the photoperiod,

indicating that light is a key regulatory signal for activating the RbcS gene. Similarly, Cui et al. (2015) observed that the soybean rbcS promoter regulates expression levels light-dependently, with increased activity in younger leaves under light exposure and a significant reduction in the absence of light. Kudo et al. (2020) also provided similar findings. Collectively, these studies highlight the importance of light as a critical factor in modulating the expression of RbcS genes across different plant systems.

CONCLUSION

The integration of the FBPase gene in transgenic IPB-CP3 potato plants is stable but shows a variation in the relative expression among transgenic lines and between two generations. However, the expression of the FBPase gene remains higher in transgenic IPB-CP3 potato plants across both generations, supporting their enhanced performance. Transgenic plants exhibit improved growth and physiological characteristics and higher tuber yields in the G_0 and G_1 generations than non-transgenic plants. It is recommended that the number of roots and stolons during the vegetative and generative phases be analyzed, and total root RNA should be isolated to better understand the effects of ClRan1 gene expression on the growth characteristics of transgenic IPB-CP3 potato plants. Further studies on the integration and expression of the FBPase and ClRan1 genes should also be conducted in the G_2 and G_3 generations to assess their stability and impact across subsequent generations.

ACKNOWLEDMENTS

The authors would like to express their gratitude to the Plant Cell and Tissue Engineering Laboratory, Biotechnology Center, IPB, for providing invaluable support and facilities throughout the research process. Special thanks are also extended to CV Bumi Agroteknologi Farm, located in Cisarua, West Bandung Regency, for their collaboration and contribution to supporting this study's experimental and practical aspects. The research was partially funded by Applied Research (Penelitian Terapan), Ministry of National Education, Republic of Indonesia, on behalf of Prof. Suharsono.

REFERENCES

- Akashi, K., Yoshida, K., Kuwano, M., Kajikawa, M., Yoshimura, K., Hoshiyasu, S., ... Yokota, A. (2011). Dynamic changes in the leaf proteome of a c3 xerophyte, *Citrullus lanatus* (wild watermelon), in response to water deficit. *Planta*, 233(5), 947-960. doi: 10.1007/s00425-010-1341-4.
- Akashi, K., Yoshimura, K., Kajikawa, M., Hanada, K., Kato, A., Katoh, A., ... Tsujimoto, H. (2016). Potential involvement of drought-induced ran gtpase clran1 in root growth enhancement in a xerophyte wild watermelon. *Bioscience, Biotechnology, and Biochemistry*, 8451, 1-10. doi: 10.1080/09168451.2016.1191328.
- Cho, M. H., Jang, A., Bhoo, S. H., Jeon, J. S., & Hahn, T. R. (2012). Manipulation of triose phosphate/phosphate translocator and cytosolic fructose-1,6-bisphosphatase, the key components in photosynthetic sucrose synthesis, enhances the source capacity of transgenic Arabidopsis plants. *Photosynthesis Research*, 111(3), 261-268. doi: 10.1007/s11120-012-9720-2.
- Conner, A. J. (2007). Field-testing of transgenic potatoes. In D. Vreugdenhil, J. Bradshaw, C. Gebhardt, F. Govers, D. K. L. Mackerron, M. A. Taylor, H. A. B. T.-P. B, & B. Ross (Eds.), *Potato Biology and Biotechnology Advances and Perspectives* (pp. 687703). Amsterdam, Netherland: Elsevier Science B.V.
- Cui, X. Y., Chen, Z. Y., Wu, L., Liu, X. Q., Dong, Y. Y., Wang, F. W., & Li, H. Y. (2015). rbcS srs4 promoter from *Glycine max* and its expression activity in transgenic tobacco. *Genetics and Molecular Research*, 14(3), 7395-7405. doi: 10.4238/2015.July.3.15.
- Daie, J. (1993). Cytosolic fructose-1,6-bisphosphatase: A key enzyme in the sucrose biosynthetic pathway. *Photosynthesis Research*, 38(1), 5-14. doi: 10.1007/BF00015056.
- Fatahillah., Suharsono., & Widyastuti, U. (2016). Genetic transformation of potato (*Solanum tuberosum* L.) cv. Nooksack with fbpase/clran1 genes mediated by *Agrobacterium tumefacien*.

- Pakistan Journal of Biotechnology, 13(3), 187-192.
- Foyer, C. H., Ruban, A. V., & Nixon, P. J. (2017). Photosynthesis solutions to enhance productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1730), 3-6. doi: 10.1098/rstb.2016.0374.
- Gervais, T., Creelman, A., Li, X. Q., Bizimungu, B., De Koeyer, D., & Dahal, K. (2021). Potato response to drought stress: Physiological and growth basis. Frontiers in Plant Science, 12(August), 1-10. doi: 10.3389/fpls.2021.698060.
- Guo, X., Duan, X., Wu, Y., Cheng, J., Zhang, J., Zhang, H., ... Li, B. (2018). Genetic engineering of maize (Zea mays L.) with improved grain nutrients. Journal of Agricultural and Food Chemistry, 66(7), 1670-1677. doi: 10.1021/acs.jafc.7b05390.
- Hameed, A., Zaidi, S. S. E. A., Shakir, S., & Mansoor, S. (2018). Applications of new breeding technologies for potato improvement. Frontiers in Plant Science, 9(925), 1-15. doi: 10.3389/fpls.2018.00925.
- Iglesias, V. A., Moscone, E. A., Papp, I., Neuhuber, F., Michalowski, S., Phelan, T., ... Matzke, A. J. M. (1997). Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. The Plant Cell, 9(8), 1251. doi: 10.2307/3870379.
- Khamis, A. K., Asli, U. A., Sarjuni, M. N. H., Jalal, M. A., Karim, H. A. A., & Sulaiman, S. (2020). Relationship between photosynthetic rate and stomatal conductance, intercellular CO2 concentration, transpiration rate, vapour pressure deficit, and photosynthetically active radiation in sweet corn (Zea mays). Journal of Sustainable Natural Resources, 1(2), 1-8. doi: 10.30880/jsunr.2020.01.02.001.
- Kiloes, A. M., Sayekti, A. L., & Anwarudin, M. J. (2015). Evaluasi daya saing komoditas kentang di sentra produksi Pangalengan Kabupaten Bandung (potato competitiveness evaluation in production center of Pangalengan, Bandung Regency). Jurnal Hortikultura, 25(1), 88-96. doi: 10.21082/jhort.v25n1.2015.p88-96.
- Kudo, N., Mano, K., Suganami, M., Kondo, E., Suzuki, Y., & Makino, A. (2020). Effects of overexpression of the Rubisco small subunit gene under the control of the Rubisco activase promoter on Rubisco contents of rice leaves at different positions. Soil Science and Plant Nutrition, 66(4), 569-578. doi: 10.1080/00380768.2020.1780898.
- Larkin, R. P., Honeycutt, C. W., Griffin, T. S., Olanya, O. M., & He, Z. (2021). Potato growth and yield characteristics under different cropping system management strategies in the northeastern U.S. Agronomy, 11(1). doi: 10.3390/agronomy11010165.
- Li, Y., Ye, Q., He, D., Bai, H., & Wen, J. (2020). The ubiquity and coexistence of two fbpases in chloroplasts of photosynthetic eukaryotes and their evolutionary and functional implications. Plant Diversity, 42(2), 120-125. doi: 10.1016/j.pld.2019.09.002.
- Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative **PCR** and the 2-∆∆ct Method. Methods, 25(4), 402-408. doi: 10.1006/meth.2001.1262.
- Long, S. P., & Bernacchi, C. J. (2003). Gas exchange measurements: what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 54(392), 2393-2401. doi: 10.1093/jxb/erg262.
- Minda, T. T., van der Molen, M. K., De Arellano, J. V. G., Chulda, K. C., & Struik, P. C. (2019). Responses of canopy growth and yield of potato cultivars to weather dynamics in a complex topography: Belg farming seasons in the Gamo Highlands, Ethiopia. Agronomy, 9(4). doi: 10.3390/agronomy9040163.
- Mukherjee, S., Mukherjee, A., Das, P., Bandyopadhyay, S., Chattopadhyay, D., Chatterjee, J., & Majumder, A. L. (2021). A salt-tolerant chloroplastic fbpase from *Oryza coarctata* confers improved photosynthesis with higher yield and multi-stress tolerance to indica rice. Plant Cell, Tissue and Organ Culture, 145(3), 561-578. doi: 10.1007/s11240-021-02026-1.
- Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioagriculture with tohaoco tissue cultures. Physiologia Plantarum, 15, 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x.

- Olivah, F. G. (2019). Genetic engineering of potato (Solanum tuberosum L.) cultivar IPB cp1 with fbpase/clran1 genes mediated by Agrobacterium tumefaciens (Master's thesis). IPB University, Bogor, Indonesia.
- Simkin, A. J., Lopez-Calcagno, P. E., Davey, P. A., Headland, L. R., Lawson, T., Timm, S., ... Raines, C. A. (2017). Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase, and the photorespiratory glycine decarboxylase-h protein increases <scp>co</scp> 2 assimilation, vegetative biomass, and seed yield in Arabidopsis. Plant Biotechnology Journal, 15(7), 805-816. doi: 10.1111/pbi.12676.
- Suharsono. (2002). Konstruksi pustaka genom kedelai kultivar Slamet. *Hayati*, 9(3), 67-70.
- Susilawati. (2020). Ekspresi gen fb pase/c1ran1 pada tanaman kentang (Solanum tuberosum L.) kultivar nooksack transgenic generasi g1 (Master's thesis). IPB University, Bogor, Indonesia.
- Tanabe, N., Tamoi, M., & Shigeoka, S. (2015). The sweet potato rbcs gene (ibrbcs1) promoter confers high-level and green tissue-specific expression of the gus reporter gene in transgenic Arabidopsis. Gene, 567(2), 244-250. doi: 10.1016/j.gene.2015.05.006.
- Taylor, S. H., & Long, S. P. (2017). Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1730). doi: 10.1098/rstb.2016.0543.
- The Central Bureau of Statistics of Indonesia (BPS). (2024). Statistik hortikultura 2023. Badan Pusat Statistik.
- Wang, X., Xu, Y., Han, Y., Bao, S., Du, J., Yuan, M., ... Chong, K. (2006). Overexpression of ran1 in rice and Arabidopsis alters primordial meristem, mitotic progress, sensitivity to auxin. Plant Physiology, 140(1), 91-101. doi: 10.1104/pp.105.071670.
- Wijayanti, A. K. (2022). Rekayasa genetika tanaman kentang (Solanum tuberosum L.) kultivar IPB cp3 dengan gen fbpase/clran1. Bogor: IPB University.
- Xu, P., & Cai, W. (2014). RAN1 is involved in plant cold resistance and development in rice (*Oryza* sativa). Journal of Experimental Botany, 65(12), 3277-3287. doi: 10.1093/jxb/eru178.
- Yan-yan, L. I., Li-na, G. U. O., Cheng-zhen, L., Zhi-gang, M., Tahira, S., & San-dui, G. U. O. (2022). Overexpression of Brassica napus cytosolic fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase genes significantly enhanced tobacco growth and biomass. Journal of Integrative Agriculture, 21(1), 49-59. doi: 10.1016/S2095-3119(20)63438-4.