

40490

by alkauniyahbiologi@gmail.com 1

Submission date: 27-Jul-2024 08:31AM (UTC-0400)

Submission ID: 2423167755

File name: 40490-121681-1-SM.doc (400K)

Word count: 4194

Character count: 25552

1 **VEGETASI RIPARIAN DAN PERSEPSI LAYANAN JASA EKOSISTEM DI**
2 **SUNGAI GAJAHWONG BAGIAN ATAS YOGYAKARTA, INDONESIA**
3

4 **RIPARIAN VEGETATION AND PERCEPTION OF ECOSYSTEM SERVICES IN THE UPPER**
5 **GAJAHWONG RIVER, YOGYAKARTA, INDONESIA**
6

7 **Eka Sulistiowati¹*, Dony Eko Saputro², Siti Aisah³**
8 ^{1,3}*Biology Study Program, Faculty of Science and Technology UIN Sunan Kalijaga, Jl. Marsda Adisucipto No.1,*
9 ⁶*Yogyakarta*
10 ²*Integrated Laboratory, UIN Sunan Kalijaga, Jl. Marsda Adisucipto No.1, Yogyakarta*
11 ²¹
12 *Corresponding author: eka.sulistiowati@uin-suka.ac.id
13

14 **Abstrak**

15 **Abstrak** Penelitian mengenai vegetasi riparian dan persepsi jasa ekosistem perlu dilakukan untuk
16 membantu masyarakat agar terlibat dalam pengelolaan kawasan sungai. Sehingga, penelitian ini
17 bertujuan untuk mempelajari komposisi vegetasi riparian di Upper Gajahwong River and 2)
18 persepsi masyarakat terhadap *ecosystem services* yang disediakan oleh biodiversitas riparian.
19 Penelitian mengenai komposisi vegetasi dilakukan dengan survei floristik dengan menggunakan
20 plot yang diletakkan pada transek di tiga lokasi yakni di Hargobinangun, Sardonoharjo, dan
21 Minomartani. Sedangkan penelitian mengenai persepsi masyarakat dilakukan dengan melakukan
22 survey terhadap 60 residents yang terpilih secara acak. Penelitian menemukan lebih dari 70 spesies
23 tumbuhan di masing-masing lokasi, sedangkan indeks keragaman sangat tinggi dengan angka >4.
24 Beberapa famili yang dominan diantaranya adalah Araceae, Fabaceae, dan Moraceae. Ketiganya
25 memiliki fungsi provisioning dan regulating yang penting bagi ekosistem. Terkait dengan persepsi
26 masyarakat, penelitian menemukan bahwa masyarakat memahami fungsi ekosistem dalam bentuk
27 provisioning services, regulating services, dan socio-cultural services. Pengetahuan mereka
28 terhadap *ecosystem services* ini dipengaruhi oleh nilai budaya, khususnya budaya Jawa yang
29 menekankan pentingnya konsevasi alam.
30

31 **Kata kunci:** Ecosystem services; Gajahwong; Perception; Riparian; Vegetation
32

33 **Abstract**

34 Research on riparian vegetation and community perceptions ⁴ ecosystem services is needed to
35 engage communities in river basin management. Therefore, this study aims to investigate the
36 composition of riparian vegetation in the Upper Gajahwong River and the community's perceptions
37 of ecosystem services provided by riparian biodiversity. The research on vegetation composition
38 was conducted through floristic surveys using plots placed along transects at three locations:
39 Hargobinangun, Sardonoharjo, and Minomartani. Meanwhile, the research on community
40 perceptions involved surveys of 60 randomly selected residents. The study found over 70 plant
41 species at each location, with very high diversity indices exceeding 4. Some dominant families
42 include Araceae, Fabaceae, and Moraceae. All of them play important provisioning and regulating
43 functions in the ecosystem. Regarding community perceptions, the research discovered that
44 communities understand ecosystem functions in terms of provisioning services, regulating services,
45 and socio-cultural services. Their knowledge of these ecosystem services is influenced by cultural
46 values, particularly Javanese culture, which emphasizes the importance of nature conservation.
47

48 **Keywords:** Ecosystem services; Gajahwong; Perception; Riparian; Vegetation
49

50 **INTRODUCTION**

51 Riparian ecosystem comprises the biotic and abiotic assemblages along the river and stream
52 network that is influenced by water dynamics (Olokeogun & Kumar, 2020; Urbanić et al., 2022).
53 Riparian systems are threatened by multiple pressures from human and agricultural activities (Lu et
54 al., 2022), climate change (Rogers, Stein, Beck, & Ambrose, 2020), biodiversity threats, and
55 changes in landuse patterns (Soeprowati et al., 2021; Xu et al., 2023).

56 Riparian vegetation encompasses a group of plants living of the banks of rivers, creeks, or
57 streams that provide ecosystem services for native biodiversity, abiotic environments, and people
58 inhabited along the water edges. It provides diverse ecosystem services, such as regulating a
59 microclimatic fluctuation, providing water, food, and any kind of benefit to people (Nóbrega et al.,
60 2020; Riis et al., 2020), and expanding economic opportunities through ecotourism (Gkiatas et al.,
61 2021). Riparian vegetation also offers protection from flood events and hydrologic drought
62 associated with fluctuating precipitation (Albano et al., 2020; Gkiatas et al., 2021).

63 Research on riparian ecosystem in Indonesia has received attention in recent years. Some of
64 the research focus on diversity of riparian vegetation (Lukas et al., 2021; Pramadaningtyas et al.,
65 2023; Saputra et al., 2021), assessment of river health (Setyoasri & Prastica, 2020), assessment of
66 environmental services (Waskita et al., 2022). Moreover, study on riparian ecosystem in Indonesia
67 has not discussed the importance of the ecosystem in providing cultural benefit to people. It is
68 observed from other studies that cultural aspect is pertinent to successful management of the overall
69 ecosystem. Lee et al. (2020), for example, incorporates social value of residents to develop planning
70 and management of riparian zones. In another work, Saklaur (2022) recognized sociocultural
71 dimension of riparian inhabitants to develop a sustainable relationship between the ecosystem and
72 the people.

73 Considering the importance of socio-cultural aspects to riparian management, this research
74 aims to study the vegetation along the banks of the Upper Gajahwong River in the Yogyakarta
75 Province, as well as the socio-cultural perceptions of residents in the area. The choice of the
76 watershed is motivated by the lack of studies on riparian ecosystems in small rivers, particularly
77 within the Yogyakarta Province. Most of the published work on riparian vegetation focus on big
78 rivers in Indonesia, such as in Sebangau River, Kalimantan (Lukas et al., 2021) and Brantas River,
79 East Java (Irawanto & Afifudin, 2024). Furthermore, the Gajahwong river serves as a significant
80 water channel in the eastern part of Yogyakarta City, providing invaluable ecosystem services
81 residing within its watershed (Ahdity & Fitriana, 2020). For many decades, the river has been used
82 for diverse domestic and industrial purposes, thereby encountering anthropogenic pressures and
83 pollutants (Risyanto & Widyastuti, 2004).

84 Understanding the multifaceted-dimensions of biodiversity and the socio-cultural aspects
85 holds significance in formulating strategies for the sustainable management of river ecosystems.
86 Consequently, there arises a need to develop knowledge on biodiversity and the socio-cultural
87 aspects inherent to riparian zones. Thus, the overarching objectives of this study encompass 1)
88 studying biodiversity and composition of riparian vegetation in the Upper Gajahwong River and 2)
89 exploring the communities' perception of general ecosystem services provided by riparian
90 biodiversity.

91 **20 MATERIALS AND METHODS**

92 The study was conducted in the Upper Gajahwong River, in the Yogyakarta Province,
93 encompassing three villages, Sardonoharjo, Hargobinangun, and Minomartani. The entire
94 Gajahwong River is a part of the Opak Watershed, which is one of three main rivers in the Province
95 of Yogyakarta.

96 The vegetation survey was performed using a linear transect positioned along both the left and
97 right edge of the river. All vegetations within the transects were identified and counted. Each
98 transect spanned approximately 100 meters in length, with 20 squared 2x2m plots were placed
99 along the transect. All vegetation was identified on-site with the assistance of Google Lens, and
100 books such as, the Flora of Java (Backer, et al., 1963) and Flora (Steenis, 1998). If identification at
101 sampling sites was not feasible, vegetation samples were collected for identification at the Ecology
102

103 Laboratory of UIN Sultan Kalijaga, Yogyakarta. Several parameters of floristic surveys were also
104 calculated, including the number of species, the count of individual species, density and frequency.
105 The parameters were calculated using the following formula:

$$106 \text{ Density} = \frac{\text{Total number of species A}}{\text{Total area (m}^2\text{)}}$$

$$107 \text{ Relative Density} = \frac{\text{Density of species A}}{\text{Total density of all recorded species}} \times 100\%$$

$$108 \text{ Frequency} = \frac{\text{Total number of plots inhabited by species A}}{\text{Total plots}}$$

$$109 \text{ Relative Frequency} = \frac{\text{Frequency of all species}}{\text{Total frequency of all species}} \times 100\%$$

$$110 \text{ Importance value} = \text{Relative density} + \text{Relative frequency}$$

111 The Shannon-Wiener Diversity Index (H') is used to calculate the diversity index, as follows:

$$112 H' = -\sum P_i \ln (P_i), \text{ where } P_i = (n_i/N)$$

113 H' = Shannon-Wiener diversity index

114 n_i = number of individuals of species i

115 N = The number of individuals of all species

116 The criteria for the diversity index's score are:

117 $H' < 1$: low diversity

118 $1 < H' \leq 3$: moderate diversity

119 $H' > 3$: high diversity

120 Regarding the socio-cultural perception on biodiversity of vegetations in riparian zones, the
121 data were collected by conducting interviews with residents from 3 villages. Respondents were
122 selected randomly, with each village represented by 20 respondents. In total, we had 60 respondents
123 representing each location. The respondents were asked several questions, encompassing 14 questions
124 about provisioning services of biodiversity, regulating services of riparian zones, and the socio-
125 cultural services of the ecosystem.

126 One of the topics explored in this simple survey is the public's knowledge regarding
127 regulating services provided by riparian vegetation. Respondents were asked about their knowledge
128 about the role of riparian vegetation in regulating microclimates, preventing floods and landslides,
129 and providing habitat for other organisms. In this regard, respondents were given the option to
130 answer yes or no to these questions. Subsequently, researchers elucidated respondents' answers
131 through open interviews. 15

132 In addition, the study explored about the importance of riparian vegetation in contributing to
133 the socio-cultural dimensions of the people. In this instance, the study employed a simple survey,
134 prompting respondents to articulate the role of riparian vegetation in supporting their socio-cultural
135 activities. Subsequently, the findings were summarized in charts and tables.

136 RESULTS

137 a. Vegetation surveys

138 In total, the vegetation surveys recorded 71 species in Hargobinangun, 76 species in
139 Sadonoharjo, and 79 species in Minomartani. The plants were surveyed from riparian zones with
140 varying cliff and water body configurations. The riparian zone in Hargobinangun was characterized
141 by moderately steep cliff with slopes of 20-30%, whereas in Sardonoharjo and Minomartani were
142 featured by mild cliff slopes (Table 1).

143 **Table 1.** The environmental conditions and vegetation in the riparian zones of the Upper
144 Gajahwong River

Hargobinangun	Sardonoharjo	Minomartani
---------------	--------------	-------------

Cliffs and river banks	Steep riverbanks with slopes of 20-30%	Less steep riverbanks, somewhat gentle cliffs	Gentle riverbanks, sloping cliffs, fertile agricultural areas present
Water body	The water body is 5-6 meters wide with a swift current	The water body is 6-7 meters wide, with a fast-flowing stream and dammed in several places due to sand mining sites.	The water body is 5-7 meters wide, with constriction due to embankments.
Substrate	Sand, gravel, and pasir, kerikil, fairly large stones, medium-sized stones"	Sand, gravel, and medium-sized stones	Sand, gravel, mud
The number of species	71	76	79
The number of family	34	30	37
Most diversified family	Araceae	Araceae	Fabaceae dan Araceae
H' index value	4.11	4.22	4.21
H' index interpretation	Intact ecosystem, high diversity	Intact ecosystem, high diversity	Intact ecosystem, high diversity

149

150 Riparian plants found in Hargobinangun consisted of 71 species from 34 families. The highest
 151 species diversity came from the Araceae Family (8 species), including *Caladium bicolor*, *Colocasia*
 152 *esculenta*, *Alocasia macrorrhizos*, *Dffenbachia seguine*, and *Xanthosoma sagittifolium*. In
 153 Sardonoharjo, there were 76 species from 30 families. The most abundant species come from the
 154 families Araceae, Poaceae, and Euphorbiaceae. Conversely, the families with the fewest species
 155 were ferns from the Selaginellaceae and Marsileaceae families. The segment was dominated by flat
 156 riverbanks with relatively low cliffs, providing a suitable habitat for grasses. Meanwhile, in the
 157 Minomartani segment, there were 79 species recorded from 37 families. The most abundant species
 158 belong to the Fabaceae family. Among the Fabaceae members were shrubs such as *Mimosa pudica*
 159 and *Clitorea ternatea*, and *perennial/tree* species including *Albizia chinensis*, *Leucaena*
 160 *leucocephala*, and *Samanea saman*. Table 2 presents an overview of the composition and
 161 parameters of the floristic survey, including the number of individuals, abundance, frequency, and
 162 importance value index (IV) at three research locations.

163

164 **Table 2.** Species with the highest IV index at the Upper Gajahwong River

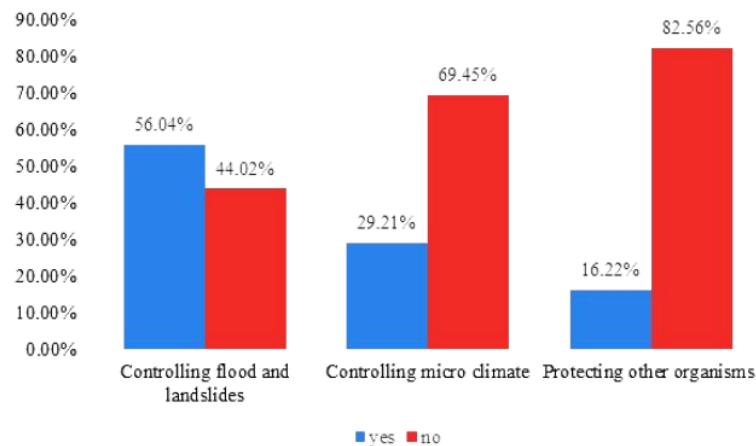
Species	Family	Number of individual	Frequency	Abundance (n/m ²)	IV (%)
a. Hargobinangun					
<i>Ficus racemosa</i>	Moraceae	4	17	0.08	3.11
<i>Sellaginella doederleinii</i>	Selaginellaceae	1	15	0.02	2.69
<i>Colocasia argentea</i>	Araceae	9	14	0.18	2.68
<i>Desmodium gigantea</i>	Fabaceae	5	14	0.1	2.60
<i>Gomphrena globosa</i>	Amaranthaceae	13	13	0.26	2.58
<i>Celocasia esculenta</i>	Araceae	3	14	0.06	2.56
<i>Areca catechu</i>	Arecaceae	2	14	0.04	2.54
<i>Ficus benjamina</i>	Moraceae	8	13	0.16	2.48
<i>Manilkara kauki</i>	Sapotaceae	8	13	0.16	2.48
<i>Melia azedarach</i>	Meliaceae	15	12	0.3	2.44
b Sardonoharjo					
<i>Dffenbachia seguine</i>	Araceae	18	19	0.36	4.40
<i>Chromolaena odorata</i>	Asteraceae	15	19	0.3	4.09
<i>Caliandra hematocephala</i>	Fabaceae	12	19	0.24	3.78
<i>Acalypha indica</i>	Euphorbiaceae	14	17	0.28	3.72

Species	Family	Number of individual	Frequency	Abundance (n/m ²)	IV (%)
<i>Albizia chinensis</i>	Fabaceae	10	19	0.2	3.57
<i>Jatropha curcas</i>	Euphorbiaceae	10	19	0.2	3.57
<i>Hippobroma longiflora</i>	Apocynaceae	15	15	0.3	3.56
<i>Eriochloa procera</i>	Poaceae	14	15	0.28	3.45
<i>Manihot glaziovii</i>	Euphorbiaceae	7	20	0.14	3.39
<i>Wedelia trilobita</i>	Asteraceae	18	11	0.36	3.34
c. Minomartani					
<i>Acalypha indica</i>	Euphorbiaceae	14	13	0.28	3.59
<i>Alocasia macrorrhizos</i>	Araceae	8	6	0.16	3.58
<i>Eleusina indica</i>	Poaceae	10	13	0.2	3.58
<i>Digitaria longiflora</i>	Poaceae	12	10	0.24	3.38
<i>Chromolaena odorata</i>	Asteraceae	15	9	0.3	3.38
<i>Amaranthus tricolor</i>	Amaranthaceae	15	4	0.3	3.31
<i>Mangifera indica</i>	Anacardiaceae	14	6	0.28	3.28
<i>Blumea lacera</i>	Asteraceae	7	17	0.14	3.26
<i>Gnetum gnemon</i>	Gnetaceae	14	6	0.28	3.12
<i>Salacca zalacca</i>	Arecaceae	4	13	0.08	3.10

165

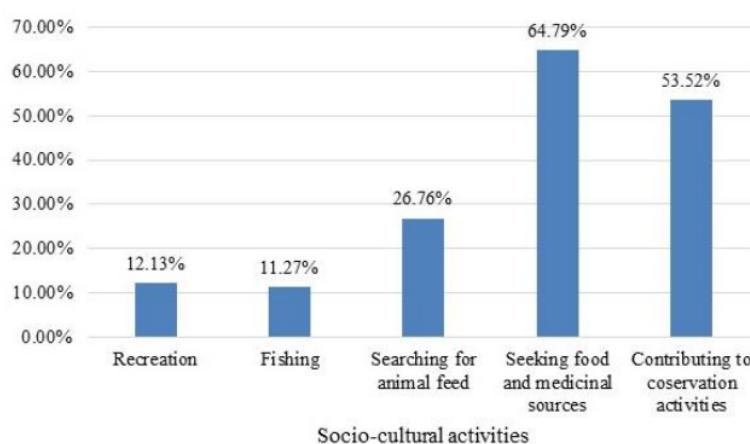
166 **b. Perceptions of ecosystem services**

167 The first dimension explored in this section was the importance of biodiversity to contribute
 168 to provisioning services. Respondents recalled at least 19 species that provides provisioning
 169 services, such as food supply and medicinal supplies, animal feed, construction materials, and
 170 firewood (Table 3).


171

172 **Table 3. Species that provides provisioning services**

Species	Local name	Utilization	Parts utilized
Medicine			
<i>Acalypha indica</i>	anting-anting	Wound treatment	Leaf
<i>Blumea lacera</i>	sembung kuwuk	High blood pressure medicine	Leaf
<i>Melia azedarach</i>	mindi	Stomachache medicine	Leaf and fruit
<i>Artocarpus altilis</i>	Sukun	Diabetes medicine	Leaf
<i>Mimosa pudica</i>	puteri malu	Gout medicine	Leaf, stem, and root
Food			
<i>Alocasia macrorrhizos</i>	Senthe	Vegetable and source of carbohydrate	Leave, tuber
<i>Digitaria longiflora</i>		Vegetable	Leaf
<i>Amaranthus tricolor</i>	Bayam	Vegetable	Leaf
<i>Mangifera indica</i>	mangga	Fruit	Leaf
<i>Gnetum gnemon</i>	Melinjo	Food, vegetable	Seed, seed shell leaf
<i>Salacca zalacca</i>	Salak	Fruit	Fruit
<i>Pandanus amaryllifolius</i>	Pandan	Spice	Leaf
<i>Artocarpus heterophyllus</i>	Nangka	Vegetable	Fruit, seed
Cattle feed			
<i>Chromolaena odorata</i>	Kirinyu	Goat feed	All parts
<i>Vernonia cinera</i>	sawi-sawian	Cattle feed	Leaf
<i>Ageratum conyzoides</i>	babandotan	Goat and rabbit feed	Leaf
<i>Sphagneticola trilobata</i>	seruni jalar	Goat feed	Leaf f
Building material and firewood			


<i>Albizia chinensis</i>	<i>Sengon</i>	Buiding materia;	Stem, branch
<i>Ficus racemosa</i>	<i>Loa</i>	Firewood	Stem, branch

173
174 Next, a survey was conducted on the regulating services of biodiversity to assess public
175 knowledge regarding the role of biodiversity in regulating microclimates, preventing floods and
176 landslides, as well as protecting other living organisms (Figure 1). The survey revealed that 82.56%
177 of respondents lacked awareness regarding the protective role of riparian vegetation for other
178 organisms. Conversely, a majority of respondents (56.4%) were aware of the contribution of
179 riparian vegetation to flood and landslide prevention.

Figure 1. The percentage of respondents who answered yes and no to the questions regarding the regulating services provided by riparian vegetation

180 We inquired about the social and cultural activities related to riparian vegetation. Most people
181 (64.79%) said that vegetation in riparian areas is linked to activities such as finding food and
182 medicine, and many (53.52%) are involved in protecting these areas (Figure 2).
183

Figure 2. The percentage of respondents stating social activities related to riparian vegetation

184 **DISCUSSION**

185 Riparian plants diversity recorded in the Upper Gajahwong varied according to habitats.
186 Riparian vegetation could be found submerged, attached to cliff of riverbank, and inhabited moist

187 habitat in the river bank. The diversity index values at the three research locations were nearly
188 similar, all above $H'=4$. The highest diversity index is found in Sardonoharjo, reflecting a high level
189 of biodiversity. This high biodiversity provides numerous ecosystem services, including oxygen
190 provision, protection of riverbanks from erosion, flood control, food sources, and medicinal
191 resources.

192 In the Hargobinangun segment, the Araceae Family is the most abundance. Most members
193 within the Araceae Family exhibit a preference for aquatic habitats and have hydrophytic
194 characteristics, as indicated by distinct leaf and stem morphology. Besides Araceae, many members
195 of the Poaceae Family, including *Pennisetum purpureum* (elephant grass), were also found along
196 the riverbanks. The presence of elephant grass was not due to natural growth but rather its
197 cultivation by residents for livestock feed.

198 Next, in the Sardonoharjo segment, it was dominated by flat riverbanks with relatively low
199 cliffs, providing a suitable habitat for grasses. Therefore, members of Poaceae such as *Eleusina*
200 *indica*, *Digitaria longiflora*, and *Eriochloa procera* could easily be observed. The plants belong to
201 this family was mostly used for cattle feed. Additionally, grasses from the Poaceae Family have the
202 potential to improve the stability of banks in shallow erosion channels., as reported by Zegeye et al.
203 (2017). In fact, the fine roots of Poaceae exhibits mechanical properties to improve soil protection
204 (Liu, Meng, Huang, Shi, & Wu, 2022).

205 In Minomartani, the presence of Fabaceae is particularly interesting considering its location in
206 densely populated areas and being a research site with relatively steep cliffs. Fabaceae is known as
207 a family whose species can store water within their bodies (Ow, Ghosh, & Yusof, 2019). One
208 particularly dominant member of the Fabaceae in the segment is the rain tree (*Samanea saman*).
209 This tree is large, with extensive branching, buttress roots capable of erosion control, and water
210 storage. Moreover, several species of Fabaceae promise a high level of carbon sequestration¹⁰, such
211 *Albizia saman* and *Senna* sp (Fajariani, Hendra, & Susanto, 2020). Therefore, Fabaceae plays an
212 important role in protecting the environment from the effects of carbon and pollution

213 In recent times, there is growing concern regarding the perception of the service ecosystem as
214 communities play the most crucial and direct role in making decisions and managing the ecosystem
215 in which they reside. (Teixeira, Vermue, Cardoso, Peña Claros, & Bianchi, 2018). Thus,
216 environmental management must consider the communities' knowledge of ecosystem services
217 (Muhamad et al., 2014). In this regard, this research confirmed that the residents had been able to
218 comprehend knowledge about the contribution of riparian vegetation to ecosystem services. For
219 example, respondents could mention four types of utilization of riparian vegetation. However, their
220 knowledge of provisioning services is limited to the general use of plants. Some other services such
221 as aromatic sources, genetic pools, and sources of chemical compounds were not mentioned by the
222 respondents.

223 In terms of regulating services, people agree that riparian vegetation exhibit important
224 properties in controlling bank erosion, regulating microclimate, and protecting other organisms.
225 Respondents mentioned that there are plant species capable of preventing erosion and maintaining
226 water, such as the banyan tree. (*Ficus benjamina*) from the Moraceae family. This tree is known for
227 its water storage capacity and is often found near water sources. The presence of large tree species
228 indicates that the riverbanks are still in good condition (Abernethy & Rutherford, 2001).

229 Furthermore, this research confirms that communities possess a strong comprehension of the
230 socio-cultural services provided by riparian vegetation. Moreover, cultural values and lifestyles
231 significantly influence their perception of these services (García-Llorente et al., 2020). In this
232 context, respondents most influenced by Javanese culture exhibit a profound appreciation for nature
233 and conservation as integral components of their daily values (refer to Figure 2). Terms such as

234 "niteni" (pay careful attention), "gemati" (nurture), and "nguri-uri" (conserving for the next
235 generation) (Wijaya & Faturochman, 2019) serve as driving forces for socio-cultural values within
236 the society.

237 CONCLUSION AND SUGGESTION

238 The Upper Gajahwong region exhibits diverse riparian plant species across various habitats,
239 from submerged areas to moist riverbanks. High diversity index values could be observed in the
240 region, with Sardonoharjo exhibiting the highest diversity. In Hargobinangun, the dominance of
241 Araceae species adapted to aquatic environments is notable, while in Sardonoharjo, Poaceae grasses
242 thrive on flat riverbanks, serving as cattle feed. In Minomartani, Fabaceae, particularly the rain tree,
243 aids in water storage and erosion control, crucial in populous areas. In terms of the community'
244 perception, this research acknowledges that the community showcases understanding and
245 knowledge of ecosystem services provided by the riparian vegetation. Regarding provisioning
246 services, the community understand the contribution of plants to provide food, medicine, and other
247 utilization. People also know the contribution of riparian vegetation in controlling erosion and
248 microclimate, and protecting other organisms. Finally, people accept the socio-cultural services of
249 riparian vegetation and the Javanese values play a significant role in shaping attitudes towards
250 environmental conservation, highlighting the need for culturally sensitive conservation approaches.
251

252 ACKNOWLEDGEMENTS

253 We express our gratitude to all respondents in Hargobinangun, Sardonoharjo, and
254 Minomartani. We also extend our thanks to the research assistants, namely M Nur Zaman, M
255 Yusuf, and friends from the Waterforum UIN Sunan Kalijaga.
256

257 REFERENCES

258 Abernethy, B., & Rutherford, I. D. (2001). The distribution and strength of riparian tree roots in
259 relation to riverbank reinforcement. *Hydrological Processes*, 15(1), 63–79. doi:
260 10.1002/hyp.152

261 Ahdiaty, R., & Fitriana, D. (2020). Pengambilan sampel air Sungai Gajahwong di wilayah Kota
262 Yogyakarta. *Indonesian Journal of Chemical Analysis (IJCA)*, 3(2), 65–73. doi:
263 10.20885/ijca.vol3.iss2.art4

264 Albano, C. M., McGwire, K. C., Hausner, M. B., McEvoy, D. J., Morton, C. G., & Huntington, J.
265 L. (2020). Drought sensitivity and trends of riparian vegetation vigor in Nevada, USA (1985–
266 2018). *Remote Sensing*, 12(9), 1362. doi: 10.3390/rs12091362

267 Fajariani, W., Hendra, M., & Susanto, D. (2020). Estimation of above ground carbon sequestration
268 in trembesi (*Albizia saman*) and johar (*Senna siamea*) at PT Multi Harapan Utama, East
269 Kalimantan. *Journal of Tropical Biodiversity and Biotechnology*, 5(2), 115. doi:
270 10.22146/jtbb.43381

271 García-Llorente, M., J. Castro, A., Quintas-Soriano, C., Oteros-Rozas, E., Iniesta-Arandia, I.,
272 González, J., ... Martín-López, B. (2020). Local perceptions of ecosystem services across
273 multiple ecosystem types in Spain. *Land*, 9(9), 330. doi: 10.3390/land9090330

274 Gkiatas, G., Kasapidis, I., Koutalakis, P., Iakovoglou, V., Savvopoulou, A., Germantzidis, I., &
275 Zaimes, G. N. (2021). Enhancing urban and sub-urban riparian areas through ecosystem
276 services and ecotourism activities. *Water Supply*, 21(6), 2974–2988. doi:
277 10.2166/ws.2021.114

278 Irawanto, R., & Afifudin, A. F. M. (2024). Identification of riparian plants potential for remediation
279 and water quality monitoring in the downstream of Brantas River, East Java. *Sciscitatio*, 5(1),
280 47–57. doi: 10.21460/sciscitatio.2024.51.163

281 Lee, J., Kweon, B.-S., Ellis, C. D., & Lee, S.-W. (2020). Assessing the social value of ecosystem
282 services for resilient riparian greenway planning and management in an urban community.
283 *International Journal of Environmental Research and Public Health*, 17(9), 3261. doi:
284 10.3390/ijerph17093261

285 Liu, Y.-F., Meng, L.-C., Huang, Z., Shi, Z.-H., & Wu, G.-L. (2022). Contribution of fine roots
286 mechanical property of Poaceae grasses to soil erosion resistance on the Loess Plateau.
287 *Geoderma*, 426, 116122. doi: 10.1016/j.geoderma.2022.116122

288 Lu, Y., Zhang, P., Liu, H., Bu, X., Li, Y., Wen, Z., ... Yuan, S. (2022). Effect of dam on iron
289 species distribution and transformation in riparian zones. *Journal of Hydrology*, 610, 127869.
290 doi: 10.1016/j.jhydrol.2022.127869

291 Lukas, Hastari, B., Ardianor, & Gumiri, S. (2021). Diversity of riparian plants of black water
292 ecosystem in the Sebangau River of Central Kalimantan Indonesian. *IOP Conference Series: Earth and Environmental Science*, 744(1), 012040. doi: 10.1088/1755-1315/744/1/012040

293 Muhamad, D., Okubo, S., Harashina, K., Parikesit, Gunawan, B., & Takeuchi, K. (2014). Living
294 close to forests enhances people's perception of ecosystem services in a forest–agricultural
295 landscape of West Java, Indonesia. *Ecosystem Services*, 8, 197–206. doi:
296 10.1016/j.ecoser.2014.04.003

297 Nóbrega, R. L. B., Ziembowicz, T., Torres, G. N., Guzha, A. C., Amorim, R. S. S., Cardoso, D., ...
298 Gerold, G. (2020). Ecosystem services of a functionally diverse riparian zone in the Amazon–
299 Cerrado agricultural frontier. *Global Ecology and Conservation*, 21, e00819. doi:
300 10.1016/j.gecco.2019.e00819

301 Olokeogun, O. S., & Kumar, M. (2020). An indicator based approach for assessing the vulnerability
302 of riparian ecosystem under the influence of urbanization in the Indian Himalayan city,
303 Dehradun. *Ecological Indicators*, 119, 106796. doi: 10.1016/j.ecolind.2020.106796

304 Ow, L. F., Ghosh, S., & Yusof, M. L. M. (2019). Growth of Samanea saman: Estimated cooling
305 potential of this tree in an urban environment. *Urban Forestry & Urban Greening*, 41, 264–
306 271.

307 Pramadaningtyas, P. S., Chandrasari, N., Izdihar, R. S., Iqbal, W. M., Cahyaningsih, A. P., &
308 Setyawan, A. D. (2023). Analysis of riparian vegetation in the Siwaluh River, Karanganyar
309 District, Central Java, Indonesia. *International Journal of Bonorowo Wetlands*, 13(2). doi:
310 10.13057/bonorowo/w130201

311 Riis, T., Kelly-Quinn, M., Aguiar, F. C., Manolaki, P., Bruno, D., Bejarano, M. D., ... Dufour, S.
312 (2020). Global overview of ecosystem services provided by riparian vegetation. *BioScience*,
313 70(6), 501–514. doi: 10.1093/biosci/biaa041

314 Risyanto, R., & Widayastuti, M. (2004). Pengaruh perilaku penduduk dalam membuang limbah
315 terhadap kualitas air Sungai Gajahwong. *Journal Manusia Dan Lingkungan*, 11(2), 73–85.

316 Rogers, J. B., Stein, E. D., Beck, M. W., & Ambrose, R. F. (2020). The impact of climate change
317 induced alterations of streamflow and stream temperature on the distribution of riparian
318 species. *PLOS ONE*, 15(11), e0242682. doi: 10.1371/journal.pone.0242682

319 Saklaurs, M., Liepiņa, A. A., Elferts, D., & Jansons, Ā. (2022). Social perception of riparian forests.
320 *Sustainability*, 14(15), 9302. doi: 10.3390/su14159302

321 Saputra, S., Arisoesilaningsih, E., Kurniawan, N., & Retnaningdyah, C. (2021). Evaluation of
322 riparian vegetation diversity as a tuntong laut (*Batagur borneoensis*) habitat in River
323 Tamiang, Aceh Tamiang, Aceh Province, Indonesia. *IOP Conference Series: Earth and
324 Environmental Science*, 743(1), 012057. doi: 10.1088/1755-1315/743/1/012057

325

326 Setyoasri, Y. P., & Prastica, R. M. S. (2020). Rapid assessment of river watershed health and
327 vulnerability level for restoration strategy: A study of river systems in Indramayu, West Java,
328 Indonesia. *IOP Conference Series: Earth and Environmental Science*, 423(1), 012016. doi:
329 10.1088/1755-1315/423/1/012016

330 Soeprbowati, T. R., Jumari, J., Saraswati, T. R., Suhry, H. C., & Gell, P. (2021). Land-use changes
331 concerning the riparian vegetation in Galela Lake, North Maluku, Indonesia. *Ecological
332 Engineering*, 170, 106368. doi: 10.1016/j.ecoleng.2021.106368

333 Teixeira, H. M., Vermue, A. J., Cardoso, I. M., Peña Claros, M., & Bianchi, F. J. J. A. (2018).
334 Farmers show complex and contrasting perceptions on ecosystem services and their
335 management. *Ecosystem Services*, 33, 44–58. doi: 10.1016/j.ecoser.2018.08.006

336 Urbanič, G., Politti, E., Rodriguez-González, P. M., Payne, R., Schook, D., Alves, M. H., ...
337 Dufour, S. (2022). Riparian zones—From policy neglected to policy integrated. *Frontiers in
338 Environmental Science*, 10, 868527. doi: 10.3389/fenvs.2022.868527

339 Waskita, T. B., Jatti, A. P., Putra, B. K. D., Satya, F. A., Rifqy, M., Pramanto, T. D., & Setiawan,
340 M. A. (2022). Assessment of ecosystem services and environmental degradation by using
341 landscape approach in the riparian area of Lake Rawapening. *Jurnal Geografi Gea*, 22(1), 33–
342 46.

343 Wijaya, R. P. C., & Faturochman, F. (2019). Conservation behavior in the agricultural societies of
344 Java. *Jurnal Psikologi*, 46(3), 211. doi: 10.22146/jpsi.28231

345 Xu, Q., Yan, T., Wang, C., Hua, L., & Zhai, L. (2023). Managing landscape patterns at the riparian
346 zone and sub-basin scale is equally important for water quality protection. *Water Research*,
347 229, 119280. doi: 10.1016/j.watres.2022.119280

348 Zegeye, H. (2017). In situ and ex situ conservation: Complementary approaches for maintaining
349 biodiversity. *International Journal of Research in Environmental Studies*, 4, 1–12.

350

351

PRIMARY SOURCES

1	journal.unhas.ac.id Internet Source	1 %
2	research-repository.uwa.edu.au Internet Source	<1 %
3	ejournal.uin-suka.ac.id Internet Source	<1 %
4	Lukas, B Hastari, Ardianor, S Gumiri. "Diversity of riparian plants of black water ecosystem in the Sebangau River of Central Kalimantan Indonesian", IOP Conference Series: Earth and Environmental Science, 2021 Publication	<1 %
5	globaljournals.org Internet Source	<1 %
6	Submitted to Universitas Brawijaya Student Paper	<1 %
7	F S Latumahina, G Mardiatmoko, J Sahusilawane. "Bird diversity on small islands in Maluku", IOP Conference Series: Earth and Environmental Science, 2020	<1 %

8 IPPOUSHI, Katsunari, Yuichi YAMAGUCHI, Hidekazu ITOU, Keiko AZUMA, and Hisao HIGASHIO. "Evaluation of Inhibitory Effects of Vegetables and Herbs on Hyaluronidase and Identification of Rosmarinic Acid as a Hyaluronidase Inhibitor in Lemon Balm(*Melissa officinalis* L.).", *Food Science and Technology Research*, 2000. Publication <1 %

9 Milad Dehghani Pour, Ali Akbar Barati, Hossein Azadi, Jürgen Scheffran, Mehdi Shirkhani. "Analyzing forest residents' perception and knowledge of forest ecosystem services to guide forest management and biodiversity conservation", *Forest Policy and Economics*, 2023 Publication <1 %

10 openprairie.sdstate.edu <1 %
Internet Source

11 Euthalia H. Sittadewi, Iwan G. Tejakusuma, Asep Mulyono, Titin Handayani, Adrin Tohari, Zufialdi Zakaria. "Post-Landslide Restoration through Multistrata Agroforestry-Based Land Management in the West Bogor Area of Indonesia", *Trees, Forests and People*, 2024 Publication <1 %

12 S Saputra, E Arisoesilaningsih, N Kurniawan, C Retnaningdyah. "Evaluation of riparian vegetation diversity as a tuntong laut (*Batagur borneoensis*) habitat in River Tamiang, Aceh Tamiang, Aceh Province, Indonesia", IOP Conference Series: Earth and Environmental Science, 2021
Publication

13 edepot.wur.nl <1 %
Internet Source

14 irep.ntu.ac.uk <1 %
Internet Source

15 link.springer.com <1 %
Internet Source

16 ro.uow.edu.au <1 %
Internet Source

17 scindeks-clanci.ceon.rs <1 %
Internet Source

18 vdocuments.com.br <1 %
Internet Source

19 www.berkalahayati.org <1 %
Internet Source

20 www.ecoeet.com <1 %
Internet Source

21

Arifah Khusnuryani, Eka Sulistiyowati.
"Household Water Supply in Yogyakarta
(Indonesia) and Hanoi (Vietnam)", Trans Tech
Publications, Ltd., 2024

<1 %

Publication

Exclude quotes On

Exclude matches Off

Exclude bibliography On

40490

PAGE 1

PAGE 2

PAGE 3

PAGE 4

PAGE 5

PAGE 6

PAGE 7

PAGE 8

PAGE 9

PAGE 10
