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Abstract  
The Vehicle Routing Problem (VRP) is an essential component of contemporary logistics, which 
becomes more complex as the Multi-Depot Vehicle Routing Problem (MDVRP) and the Multi-Depot 
Vehicle Routing Problem with a Heterogeneous Fleet (MDVRPHF). The main objective of 
MDVRPHF is to meet all customer demands while minimizing total distribution costs by using vehicles 
with varying capacities. This paper proposes a metaheuristic framework that first uses the Nearest 
Neighbor (NN) algorithm to build initial routes and then employs the Simulated Annealing (SA) 
algorithm to optimize the arrangement of goods within each vehicle, ensuring capacity limits are met. 
Computational experiments using real-world inspired data, representing 20 items distributed from a 
Bandung depot to multiple customers with three heterogeneous vehicle types, showed that the 
proposed hybrid NN–SA method achieved an 18.4% reduction in total distribution cost compared to 
the NN method alone. These results indicate that this integrated approach offers a practical, 
computationally efficient solution to the complexities of MDVRPHF, establishing it as a useful tool for 
logistics planning. 
Keywords: Multi-Depot Vehicle Routing Problem; Heterogeneous Fleet; Nearest Neighbor; Simulated 
Annealing; Metaheuristics. 

 

Abstrak 
Vehicle Routing Problem (VRP) merupakan bagian penting dari logistik kontemporer, yang kompleksitasnya 
meningkat menjadi Multi-Depot Vehicle Routing Problem (MDVRP) dan Multi-Depot Vehicle Routing 
Problem with a Heterogeneous Fleet (MDVRPHF). Untuk MDVRPHF, tujuan utamanya adalah memenuhi 
seluruh permintaan pelanggan sambil meminimalkan biaya distribusi total dengan memanfaatkan kendaraan 
berkapasitas berbeda. Makalah ini mengusulkan kerangka kerja metaheuristik yang pertama-tama menggunakan 
algoritma Nearest Neighbor (NN) untuk membentuk rute awal, kemudian algoritma Simulated Annealing (SA) 
digunakan untuk mengoptimalkan penataan barang di setiap kendaraan agar batas kapasitas terpenuhi. Eksperimen 
komputasi menggunakan data uji berbasis kondisi nyata yang merepresentasikan distribusi 20 item dari satu depot di 
Bandung ke beberapa pelanggan dengan tiga jenis kendaraan heterogen. Hasil penelitian menunjukkan bahwa metode 
hibrida NN–SA ini menghasilkan penurunan biaya distribusi total sebesar 18,4% dibandingkan metode NN murni, 
yang menunjukkan bahwa pendekatan terpadu ini memberikan solusi praktis dan efisien secara komputasi untuk 
kompleksitas MDVRPHF. 
Kata Kunci: Multi-Depot Vehicle Routing Problem; Armada Heterogen; Nearest Neighbor; Simulated 
Annealing; Metaheuristik. 
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1. INTRODUCTION 

The Vehicle Routing Problem (VRP), first introduced by Dantzig and Ramser [1], is a cornerstone 
of modern logistics optimization. It focuses on determining efficient routes for vehicles delivering 
goods from depots to customers. Over time, the VRP has evolved into complex variants such as the 
Multi-Depot Vehicle Routing Problem (MDVRP) and the Heterogeneous Fleet Vehicle Routing 
Problem (HFVRP). Their integration, the Multi-Depot Vehicle Routing Problem with a 
Heterogeneous Fleet (MDVRPHF), presents additional challenges due to the need to manage diverse 
vehicle capacities, multiple depots, and varying operational costs [2], [3]. 

Numerous heuristic and metaheuristic methods have been developed to solve VRP variants, 
including Genetic Algorithms (GA), Tabu Search (TS), and Simulated Annealing (SA) [4], [5]. While 
constructive heuristics such as Clarke and Wright’s Savings Algorithm and Nearest Neighbor (NN) 
provide quick feasible solutions [6], they often fall short in handling multi-depot and heterogeneous 
conditions efficiently. Hybrid approaches, as proposed by Ho et al. [7], integrate clustering and 
metaheuristic refinement to improve solution quality, though many still treat routing and vehicle 
allocation separately or rely on artificial datasets. 

In MDVRPHF, the main challenge lies in optimizing both route assignment and vehicle selection 
while minimizing total distribution costs under capacity constraints. This study introduces a hybrid 
metaheuristic that combines NN for rapid route construction with SA for adaptive refinement. The 
NN–SA approach leverages NN’s speed and SA’s capability to escape local optima, achieving high-
quality, computationally efficient solutions. 

The contributions of this work include: (1) a hybrid NN–SA framework for simultaneous routing 
and loading optimization, (2) experimental validation using real-world inspired data, and (3) a 
demonstrated 18.4% cost reduction compared to the NN baseline. This research thus offers a practical 
and efficient solution to the complexities of MDVRPHF in modern logistics systems. 

 
2. METHOD 

To formally define and solve the Multi-Depot Vehicle Routing Problem with a Heterogeneous 
Fleet (MDVRPHF), a hybrid metaheuristic framework combining the Nearest Neighbor (NN) and 
Simulated Annealing (SA) algorithms is employed. The overall methodology consists of two main 
stages: route construction and route improvement. The NN algorithm is first used to construct an 
initial feasible route for each vehicle by greedily connecting the nearest unvisited customers while 
respecting the capacity limits of each vehicle. This initial route provides a practical yet suboptimal 
starting point. The second stage utilizes the SA algorithm to refine the initial solution by exploring the 
solution space through probabilistic acceptance of worse moves, allowing the algorithm to escape 
local optima and achieve a better global configuration. 

The SA algorithm mimics the physical annealing process in metallurgy, where a material is 
gradually cooled to reach a stable crystalline structure. In this context, each feasible route configuration 
represents a “state,” and the “energy” corresponds to the total distribution cost. The algorithm 
iteratively perturbs the current solution by swapping or reassigning customers between routes, then 
evaluating the new configuration’s cost. If the new configuration yields a lower total cost, it is accepted; 
otherwise, it may still be accepted with a certain probability depending on the temperature parameter. 
This probabilistic mechanism enables the algorithm to balance exploration and exploitation 
effectively. 
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Simulated Annealing Parameters 

To   ensure   experimental   reproducibility   and   performance   consistency,  the   following   SA 
parameters were used and justified based on preliminary sensitivity analysis: 

1) Initial Temperature (T₀ = 100): 
A sufficiently high temperature allows the algorithm to explore a wide range of configurations in 
the early stages. The value 100 was empirically chosen after several trials showed it produced stable 
convergence without excessive random wandering. 

2) Cooling Rate (α = 0.95): 
The temperature is reduced by multiplying it by α after each iteration cycle. A cooling rate of 0.95 
provides a balanced trade-off between exploration and convergence speed, ensuring that the search 
remains diverse in the early stages but stabilizes near the end. 

3) Iteration Limit per Temperature Level (L = 100): 
Each temperature level allows up to 100 solution perturbations. This value ensures sufficient local 
exploration before cooling occurs, contributing to more consistent improvement across runs. 

4) Stopping Criterion: 
The SA process terminates when the temperature drops below T_min = 0.01 or when no 
improvement occurs for 10 consecutive temperature cycles. These stopping criteria were 
determined through experimentation to prevent unnecessary computation once the solution 
stabilizes. 

Parameter Selection and Computational Justification 

The chosen parameters were fine-tuned based on a set of pilot experiments to balance 

computational time and solution quality. Specifically, combinations of (T₀ = 50, 100, 150) and (α = 

0.90, 0.95, 0.99) were tested. The configuration (T₀ = 100, α = 0.95) consistently achieved the lowest 
average total cost while maintaining reasonable computational time (average 12.6 seconds per run). 

Increasing T₀ or α beyond these values did not yield statistically significant improvements but 
increased runtime by 30–40%. 

From a computational complexity standpoint, the SA algorithm exhibits a complexity of 
approximately O(n² × I), where n is the number of customers and I is the number of iterations. The 
quadratic term arises from the pairwise customer exchanges evaluated during neighborhood 
generation, while I depend on the number of temperature levels and iteration limits. Although the 
algorithm is computationally intensive for large datasets, its hybrid integration with NN—which 
provides a high-quality initial solution—significantly reduces the number of iterations needed for 
convergence. This combination ensures scalability and efficiency when handling medium-sized 
MDVRPHF instances. 

Through this parameterization and design, the hybrid NN–SA framework effectively balances 
exploration and exploitation, yielding near-optimal routing and loading solutions with consistent 
computational efficiency. 

2.1. Objective Function 

The main objective of the Multi-Depot Vehicle Routing Problem with a Heterogeneous Fleet 
(MDVRPHF) is to minimize the total distribution cost, which consists of two primary components: 

1) the fixed cost associated with deploying each vehicle type, and 
2) the variable operating cost depends on the travel distance between customer locations. 
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The objective function, shown in Eq. (1), is formulated to reflect these two cost components in a 
mathematically concise form: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = (∑ ∑ ∑ 𝐹𝑘 ∙ 𝑥𝑑𝑗𝑘𝑑𝑗𝜖𝐶𝑘𝜖𝐾𝑑𝜖𝐷 ) + (∑ ∑ ∑ 𝛼𝑘𝐷𝑖𝑗 ∙ 𝑥𝑖𝑗𝑘𝑑𝑗𝜖𝐶𝑘𝜖𝐾𝑑𝜖𝐷 ).                 (1) 

The first term Eq. (1) represents the fixed cost 𝐹𝑘 incurred whenever a vehicle of type 𝑘 is assigned 

to depart from depot 𝑑. This cost accounts for vehicle activation, maintenance, and driver expenses. 

The binary variable 𝑥𝑑𝑗𝑘 equals 1 if vehicle 𝑘 from depot 𝑑 serves customer 𝑗, and 0 otherwise. The 

second term represents the variable cost associated with travel between nodes 𝑖 and 𝑗, where 𝐷𝑖𝑗 

denotes the distance between those nodes and 𝛼𝑘 is the cost coefficient per distance unit for vehicle 

type 𝑘. 
This formulation structure follows the standard cost minimization framework widely used in the 

Vehicle Routing Problem (VRP) literature [2], [8], [3]. The function integrates both depot-level and 
fleet-level decision variables to capture the multi-depot and heterogeneous characteristics of the 
problem simultaneously. It also aligns with the general formulation of the Fleet Size and Mix Vehicle 
Routing Problem (FSMVRP) introduced by Golden et al. [2], later extended to MDVRPHF by Dursun 
& Özger [9]. 

The rationale for adopting this two-part cost structure is that it directly represents the economic 
trade-off faced in real logistics operations: activating more vehicles increases fixed costs, while longer 
routes increase variable transportation costs. Therefore, the optimization process seeks to find a 
balanced allocation that minimizes the total cost ZZZ, while ensuring all customer demands are 
satisfied and capacity constraints are met. 

The proposed objective function is an adaptation of the general VRP cost model for multi-depot 
and heterogeneous fleet systems. It incorporates elements from established formulations by Baldacci 
et al. [8] and Burke et al. [5] but is specifically extended here to include simultaneous vehicle routing 
and load distribution, which is optimized later using the Simulated Annealing process. 

Hence, Eq. (1) serves as the mathematical foundation for evaluating the performance of the 
hybrid Nearest Neighbor–Simulated Annealing (NN–SA) algorithm, allowing both cost efficiency and 
operational feasibility to be quantified in a unified objective function. 

2.2. Constraints 

The mathematical model for the Multi-Depot Vehicle Routing Problem with a Heterogeneous 
Fleet (MDVRPHF) is subject to a set of constraints that ensure the feasibility and logical consistency 
of the proposed routing plan. These constraints govern customer assignment, vehicle flow, depot 
operation, and capacity limits, thereby guaranteeing that each customer is served exactly once, vehicle 
movements are continuous, and no capacity restrictions are violated. The formulation structure used 
in this study is adapted and extended from classical MDVRP and HFVRP formulations proposed by 
Baldacci et al. [8], Ho et al. [7], and Koç et al. [3], adjusted to incorporate heterogeneous vehicle 
characteristics and multi-depot interactions simultaneously. 

The model includes five main sets of constraints, formulated as follows: 
(1) Customer Service 

To guarantee that all demand nodes are appropriately served within the multi-depot framework, 
the first set of constraints is formulated to ensure proper assignment of each customer. This 
customer service requirement is expressed mathematically as follows:  
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∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑑 = 1𝑑𝜖𝐷𝑘𝜖𝐾  ,   ∀𝑗 𝜖 𝐶𝑖𝜖𝑉 .         (2) 

Each customer must be visited by exactly one vehicle from one depot. This ensures that every 
demand node is served once and only once, eliminating redundant or missing deliveries. This 
formulation follows the standard VRP constraint structure introduced by Clarke and Wright [6] 
and extended to multi-depot cases by Cordeau et al. [10]. 

(2) Flow Conservation 
To maintain the logical progression of vehicle movements throughout the network, the second 
set of constraints establishes the principle of flow conservation. This requirement is formulated 
as follows:  

∑ 𝑥𝑖𝑗𝑑𝑘𝑗𝜖𝑉 −  ∑ 𝑥𝑖𝑗𝑑𝑘𝑗∈𝑉 = 0, ∀𝑖 𝜖 𝐶, ∀𝑘 𝜖 𝐾, ∀𝑑 𝜖 𝐷.          (3) 

This constraint enforces route continuity, meaning that if a vehicle enters a customer’s location, 
it must also leave that location. This rule prevents route discontinuities and ensures that all vehicle 
paths are closed loops beginning and ending at their respective depots. 

(3) Depot Departure and Return 
To ensure that vehicle routes accurately reflect operational constraints at each depot, the third set 
of constraints specifies the required departure and return conditions. This requirement is 
expressed mathematically as follows:  

∑ 𝑥𝑏𝑗𝑘𝑑𝑗𝜖𝐶 − ∑ 𝑥𝑖𝑏𝑘𝑑𝑖∈𝐶 ∀𝑘 𝜖 𝐾, ∀𝑑 𝜖 𝐷.             (4) 

Each vehicle must depart from and return to the same depot, reflecting realistic logistics 
operations. This rule maintains depot balance and ensures that vehicles assigned to a depot remain 
under its operational control throughout the routing process. Similar formulations were used by 
Ho et al. [7] and Crevier et al. [11] in multi-depot routing frameworks. 

(4) Capacity Constraints 
To ensure that no vehicle exceeds its maximum load capacity in terms of mass and volume, two 
separate constraints are defined: 

• Weight Capacity: 

𝑢𝑗𝑘𝑑  ≥  𝑢𝑖𝑘𝑑 + 𝑤𝑗 −  𝑄𝑘
𝑤  (1 −  𝑥𝑖𝑗𝑘𝑑) ∀𝑖, 𝑗 ∈ 𝐶, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷.   (5) 

 

• Volume Capacity: 

𝑧𝑗𝑘𝑑  ≥  𝑧𝑖𝑘𝑑 + 𝑣𝑗 −  𝑄𝑘
𝑣  (1 − 𝑥𝑖𝑗𝑘𝑑) ∀𝑖, 𝑗 ∈ 𝐶, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷.               (6) 

These constraints ensure that the total weight 𝑤𝑖 and volume 𝑣𝑖 of goods assigned to each vehicle 

do not exceed its respective capacity limits 𝑤𝑘  and 𝑣𝑘. This dual-capacity formulation is crucial 
in heterogeneous fleet problems, as different vehicle types have distinct physical and volumetric 
capacities. Similar formulations are discussed in Golden et al. [2] and Koç et al. [3] for capacity-
constrained heterogeneous fleets. 

(5) Binary Decision Variable Definition 
To ensure that no vehicle exceeds its maximum load capacity in terms of mass and volume, two 
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separate constraints are defined: 

𝑥𝑖𝑗𝑘𝑑 =  {
1,
0,

  

where 1, if vehicle k from depot d travels from node 𝑖 to 𝑗 and 0, otherwise This definition 

specifies that the decision variable 𝑥𝑖𝑗𝑘𝑑 is binary, representing whether a specific vehicle from a 

particular depot travels between two nodes. The binary formulation ensures that the optimization 

problem remains discrete, consistent with the combinatorial nature of VRP. 

Collectively, these constraints define the operational feasibility space for the MDVRPHF model. 
They ensure that customer assignments, routing sequences, and vehicle utilization adhere to realistic 
logistic principles. This formulation builds upon established VRP structures [10], [12] but extends 
them to handle simultaneous multi-depot coordination and heterogeneous fleet management, which 
are essential for real-world distribution systems. 

• Variable Type  

𝑥𝑖𝑗𝑘𝑑 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝑉, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 

𝑢𝑖𝑘𝑑 ∈ 0 ∀𝑖 ∈ 𝐶, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 

𝑧𝑖𝑘𝑑 ∈ 0 ∀𝑖 ∈ 𝐶, ∀𝑘 ∈ 𝐾, ∀𝑑 ∈ 𝐷 

• Sets 

V: Set of all nodes, 𝑉 = 𝐶 ∪ 𝐷, 

D: Set of depot nodes, 𝑑, 

C: Set of customer nodes, 𝑖, 𝑗, 

K: Set of heterogeneous vehicle types, 𝑘. 

• Parameters 

𝐷𝑖𝑗  :  Distance between node 𝑖 and node 𝑗, 

𝑤𝑖  :  Weight of demand for customer 𝑖, 

𝑣𝑖  :  Volume of demand for customer 𝑖, 

𝐹𝑘  :  Fixed cost for a vehicle of type 𝑘, 

𝛼𝑘  :  Variable operating cost per unit of distance for a vehicle of type 𝑘, 

𝑄𝑘
𝑤  :  Weight capacity of vehicle 𝑘, 

𝑄𝑘
𝑣  :  Volume capacity of vehicle 𝑘. 

• Variables: 

𝑥𝑖𝑗𝑘𝑑  :  Binary variable, 1 if vehicle k from depot d travels from node 𝑖 to 𝑗. 

𝑢𝑖𝑘𝑑  :  Cumulative weight delivered by vehicle k after visiting customer 𝑖 . 

𝑧𝑖𝑘𝑑  :  Cumulative volume delivered by vehicle k after visiting customer 𝑖 . 

2.3. Proposed Hybrid Algorithm 

Considering the NP-hard nature of the Multi-Depot Vehicle Routing Problem with a 
Heterogeneous Fleet (MDVRPHF), a hybrid metaheuristic algorithm is developed by integrating the 
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Nearest Neighbor (NN) heuristic and the Simulated Annealing (SA) optimization procedure. The 
integration combines the constructive power of NN to rapidly generate feasible routes with the 
refinement capability of SA to improve route quality and optimize vehicle loading within capacity 
constraints. This hybrid structure aims to achieve near-optimal solutions efficiently while maintaining 
computational scalability for medium-sized problem instances. The methodology is structured in two 
main stages: 

1. Route Construction (Nearest Neighbor Stage) 
NN constructs an initial feasible solution by iteratively assigning customers to the nearest 
unvisited node while considering the vehicle’s remaining capacity and depot distance. This stage 
ensures a fast and logical clustering of geographically close customers into efficient initial routes. 

2. Route Refinement (Simulated Annealing Stage) 
The SA algorithm refines the NN-generated routes by probabilistically exploring neighboring 
solutions. Route modifications are performed through operations such as swap, reinsert, or 2-opt 
exchanges, and acceptance of worse solutions is guided by the temperature parameter. The 
objective is to minimize total cost (Eq. 1) while respecting all operational constraints. 

 
Algorithm 1. Hybrid NN–SA Framework for MDVRPHF 

 
 
Input: Set of depots D, customers C, vehicles K, distance matrix D_ij, cost parameters F_k, α_k 

Output: Best solution S_best with minimum total cost Z 
 
1. Initialization: 
   a. Define SA parameters: T0 = 100, α = 0.95, L = 100, Tmin = 0.01 
   b. Initialize solution S_current ← ConstructInitialSolution_NN(D, C, K) 
   c. Compute total cost Z_current ← Evaluate(S_current) 
   d. Set S_best ← S_current; Z_best ← Z_current 
 
2. While (T > Tmin) do 
   a. For iteration = 1 to L do 
       i. Generate neighbor S_new ← ApplyNeighborhoodOperator(S_current) 
          (e.g., Swap, 2-Opt, or Reinsert) 
      ii. Compute Z_new ← Evaluate(S_new) 
     iii. If (Z_new < Z_current) then 
              Accept S_new 
          Else 
              Accept S_new with probability P = exp(-(Z_new - Z_current)/T) 
      iv. Update S_current ← S_new 
      v. If (Z_new < Z_best) then 
              S_best ← S_new; Z_best ← Z_new 
   b. Decrease temperature: T ← α × T 

   3. Return S_best 
 

 
2.4. Explanation of Integration and Advantages 

The integration of NN and SA creates a synergistic balance between speed and solution quality. 
The NN stage ensures that the algorithm starts from a feasible and geographically coherent solution, 
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reducing the search space size. The SA stage then performs stochastic optimization to escape local 
optima, effectively improving route cost and load balancing across vehicles. 

This hybridization follows the “construct–improve” paradigm proposed by Bräysy and Gendreau 
[13][14] and later applied in multi-depot contexts by Ho et al. [7]. Compared to pure NN or GA-based 
methods, the NN–SA hybrid offers faster convergence and requires fewer iterations to reach stable 
cost reductions, as validated in the experimental section. 

2.5. Architectural Rationale: Synergy of Routing and Loading 

The initial stage utilizes the fast Nearest Neighbor heuristic to create a viable preliminary route, 
which outlines the delivery assignments for each vehicle. The subsequent stage uses the robust 
Simulated Annealing metaheuristic to address the intricate subproblem of arranging goods for that 
specific route while respecting the vehicle's capacity limits. This collaborative approach, where one 
algorithm determines the path and another optimizes the cargo, can greatly speed up the process of 
finding a high-quality solution [10]. 

2.6. Route Generation: Nearest Neighbor Heuristic 

The NN heuristic is employed to generate the initial route framework [5][15]. With this method, 
routes are formed by repeatedly choosing the nearest unvisited customer as the subsequent stop, all 
while staying within vehicle capacity constraints. The use of NN is warranted by its minimal 
computational demands and its capacity to create a logical grouping of geographically concentrated 
customers, which provides a solid basis for an effective route plan [16], [17]. 

2.7. Loading Optimization: Simulated Annealing Process 

After a route has been established by the NN algorithm, the SA algorithm is tasked with 
determining the most efficient way to load the necessary goods. The performance of SA depends on 
its key elements: solution representation, neighborhood operators, acceptance criteria, and a cooling 
schedule. These components work together to strike a balance between exploration (diversifying the 
search) and exploitation (focusing the search on a promising area). This balance enables the algorithm 
to discover a highly refined loading configuration that meets all constraints and avoids getting trapped 
in suboptimal local optima. 

3. RESULTS 

This section presents the experimental findings obtained from the hybrid NN–SA algorithm 
compared with the baseline Nearest Neighbor (NN) method. The results are structured into 
subsections that describe the dataset, vehicle configurations, performance comparison, and 
convergence behavior. Numerical evidence and visual representations (tables and figures) are provided 
to demonstrate the algorithm’s effectiveness in optimizing the Multi-Depot Vehicle Routing Problem 
with a Heterogeneous Fleet (MDVRPHF). 

3.1. Dataset and Vehicle Characteristics 

The  computational  experiment  utilizes  a  real-world inspired dataset representing 20 customer  
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nodes and three heterogeneous vehicles operating from multiple depots. The vehicle characteristics 
are summarized in Table 1. Table 1 defines the fleet configuration used in the experiment. The 
heterogeneity of the fleet introduces variability in capacity and operating cost, which directly impacts 
route assignments and total distribution efficiency. Larger vehicles are expected to handle high-
demand routes efficiently, while smaller ones serve low-volume areas near depots.able 1 defines the 
heterogeneous fleet structure used in the experiments. The differences in weight and volume capacity 
directly affect how customers are assigned and how loading optimization is performed. 

Table 1. Vehicle Capacity and Operational Characteristics 

Vehicle Weight Capacity 
(kg) 

Volume Capacity 
(m³) 

Fixed Cost (IDR) Variable Cost 
(IDR/km) 

V1 30.0 1.10 80,000 1,000 
V2 37.0 1.50 110,000 1,000 
V3 40.0 2.00 150,000 1,000 

 

3.2. Performance Comparison: NN vs. NN–SA 

To assess performance improvement, the hybrid NN–SA algorithm is compared to the 
standalone NN method. Table 2 summarizes the key performance metrics. The hybrid method 
demonstrates an 18.3% reduction in total distance and an 18.4% decrease in total cost compared to 
NN. The increased load utilization indicates improved allocation efficiency between vehicle capacity 
and customer demand. While computation time slightly increases, the trade-off results in significantly 
better operational performance. 

Table 2. Comparison of NN and NN–SA Performance 

Metric NN Only NN–SA Hybrid Improvement 

Total Distance (km) 204.60 167.00 18.3% ↓ 
Total Distribution Cost (IDR) 1,034,000 844,000 18.4% ↓ 
Average Load Utilization (%) 78.2% 91.6% +13.4% ↑ 

Average Computation Time (s) 3.4 12.6 — 

 

3.3. Simulated Annealing Convergence Behavior 

Figure 1 show the xeperimental total profit using SA (left) and the best fitness convergence curve 
across generation (right). The left figure shows a rapid improvement during the first 30 iterations, 
followed by gradual stabilization, representing SA’s cooling effect. The curve plateau after iteration 
200 indicates convergence to a near-optimal state. The right figure displays the evolution of fitness 
values, where the blue curve stabilizes around generation 80, confirming algorithmic convergence. 
Early fluctuations are due to the probabilistic acceptance mechanism of SA, which enables the escape 
from local optima and achieves a globally stable solution. 

3.4. Vehicle Utilization and Allocation Efficiency 

Table 3 provides the post-optimization utilization levels for each vehicle in the hybrid NN–SA 
solution. The results demonstrate that larger vehicles (V2 and V3) achieve near-full weight utilization, 
while smaller vehicles (V1) optimize volume-limited routes. This balanced utilization pattern 
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contributes to minimizing overall cost, confirming that the hybrid algorithm efficiently distributes 
loads according to capacity and demand patterns. 

  

Figure 1. Experimental total profit using SA (left) and the best fitness convergence curve across generation 
(right) 

Table 3. Vehicle Capacity Utilization in NN–SA Results 

Vehicle Load Weight 
(kg) 

Volume Used 
(m³) 

Weight Utilization 
(%) 

Volume Utilization 
(%) 

V1 22.65 0.99 75.5 90.0 
V2 36.60 0.77 98.9 51.3 
V3 38.60 1.04 96.5 52.0 

 

3.5. Statistical Validation 

Ten independent runs were conducted to validate stability. Table 4 summarizes mean, standard 
deviation, and coefficient of variation (CV) values. The lower standard deviation and CV in NN–SA 
results indicate consistent convergence and stability across multiple runs, validating the robustness 
of the proposed hybrid approach. 

Table 4. Statistical Comparison of Cost Performance 

Method Mean Cost  
(IDR) 

Std. Dev. Coefficient of Variation  
(%) 

NN 1,036,400 7,800 0.75 
NN–SA 844,900 4,600 0.54 

 

4. DISCUSSIONS 

In The hybrid NN–SA algorithm demonstrates superior performance over the standalone NN 
approach due to three key mechanisms: improved load distribution, reduced total travel distance, and 
enhanced capacity efficiency through adaptive allocation. 
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4.1. Cause and Mathematical Implications 

The cost reduction is primarily driven by the SA phase, which iteratively improves customer 
sequencing and depot assignments. Mathematically, the SA mechanism minimizes the composite cost 
function: 

𝑍 =  ∑ 𝐹𝑘 𝑥𝑑𝑗𝑘 +  ∑ 𝛼𝑘 𝐷𝑖𝑗𝑥𝑖𝑗𝑘𝑑, 

by generating neighbor solutions that decrease both distance (𝐷𝑖𝑗) and underutilized capacity (through 

improved 𝑥𝑖𝑗𝑘𝑑  configurations). Hence, the lower total cost is a direct consequence of a better balance 

between fixed and variable costs, as the algorithm tends to allocate larger vehicles to high-demand 
routes, minimizing total mileage. 

4.2. Correlation with Previous Research 

The findings are consistent with Ho et al. [7], who found that hybrid metaheuristics outperform 
single-phase heuristics in multi-depot VRPs. Similarly, Koç et al. [3] noted that heterogeneous fleet 
optimization benefits from load balancing strategies, which this study’s SA component explicitly 
achieves. However, compared to Bräysy & Gendreau [14], which employed tabu search for single-
depot VRP, this method shows superior performance in multi-depot scenarios by dynamically 
adjusting routes during annealing. 

4.3. Methodological Limitations 

Despite its effectiveness, the hybrid NN–SA method still presents several notable limitations. 

First, the algorithm is highly sensitive to parameter settings, particularly the initial temperature (T₀) 
and cooling rate (α); improper tuning of these parameters may lead to premature convergence or 
unnecessary computational effort. Second, while the total runtime is manageable for small- to 
medium-sized datasets, the method may face scalability issues, as computational complexity can 
increase substantially when the number of customers exceeds 100. Finally, the deterministic nature of 
the nearest-neighbor (NN) initialization may bias the solution search toward suboptimal regions, 
reducing exploration diversity. For this reason, future studies may consider incorporating stochastic 
initialization strategies or adaptive cooling schedules to enhance robustness and improve global search 
capability. 

4.4. Overall Insights 

The hybrid algorithm’s strength lies in its integration of deterministic construction through the 
nearest-neighbor (NN) method with stochastic refinement via simulated annealing (SA), enabling a 
balanced and efficient optimization process. This combination reduces inter-depot distance overlaps, 
enhances vehicle utilization ratios, and effectively manages the trade-off between exploration and 
exploitation throughout the search procedure. As a result, the synergy between NN and SA produces 
a global improvement in the objective function and demonstrates that the proposed NN–SA model 
is both scalable and practical as a decision-support tool for real-world multi-depot logistics systems. 



Debby Agustine, Janson Naiborhu, and Ikha Magdalena 

 

224 | InPrime: Indonesian Journal of Pure and Applied Mathematics 
 

5. CONCLUSION 

This study proposed a hybrid metaheuristic framework combining the Nearest Neighbor (NN) 
heuristic and the Simulated Annealing (SA) algorithm to solve the Multi-Depot Vehicle Routing 
Problem with a Heterogeneous Fleet (MDVRPHF). The model integrates rapid route construction 
and adaptive route refinement, aiming to minimize total distribution costs while satisfying vehicle 
capacity and operational constraints. The experimental results demonstrate that the proposed NN–
SA hybrid algorithm reduces the total distribution cost by 18.4% and shortens the total travel distance 
by 18.3% compared to the baseline NN method. Additionally, vehicle load utilization increased from 
78.2% to 91.6%, indicating improved capacity efficiency and balanced load distribution. The statistical 
validation across 10 independent runs further confirms the algorithm’s stability, with a 46% reduction 
in cost variance compared to NN alone. 

Scientifically, this research contributes to the literature by (1) formulating a hybrid optimization 
framework that integrates route generation and load allocation in a unified model, (2) providing a 
parameterized SA mechanism suitable for multi-depot heterogeneous fleets, and (3) validating 
performance improvements quantitatively using real-world inspired data. These findings reinforce that 
hybrid metaheuristics can achieve near-optimal solutions efficiently for complex combinatorial 
logistics problems. 

In practical terms, the NN–SA framework offers a computationally feasible and cost-effective 
decision-support tool for logistics planners dealing with multi-depot networks and mixed vehicle 
fleets. Future work will focus on parameter adaptation, large-scale instance scalability, and dynamic 
demand conditions to further enhance real-world applicability. 
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