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Abstract
Solving multi-objective linear programming problems (MOLPP) is a great challenge because it is
essential in many real-life problems, especially manufacturing. Choosing the best solution is the goal of
the decision-maker to produce a possibility to improve their ability to decide. Multi-dimensional scaling
(MDS) gives this capability to make the right decision. In this study, we develop the MDS method for
(MOLPP) in the work of Mrakhan et al. (2020). The method depends on embedding points in RZ.
Start by building a matrix from a collection of points, and then use clustering to optimize the matrix
dimensions and configure the points in R?. The matrix has (k; X 2) dimensions, where k; is the big
cluster of the points. Also, a center of points was used to find the scaling points, and then the center of
the generated points was used to find a distance from the origin (0, 0). Out proposed algorithm offers
a structured, efficient compromise solution for MOLPPs, outperforming traditional scalarization-based
methods.
Keywords: Comprise solution; Multi-dimensional scaling; Multi-objective linear programming;
Optimal advanced; Optimal average; Quadratic average.

Abstrak

Menyelesaikan masalah pemrograman linier multiobjektif (MOLPP) merupakan tantangan besar karena sangat
penting dalam banyak masalab kebidupan nyata, terutama manufaktur. Memilib solusi terbaik adalah tujnan pembuat
keputusan untuk menciptakan kemungkinan guna meningkatkan Remampuan mereka dalam mengambil keputusan.
Penskalaan multidimensi (MDS) memberikan kemampnan ini untuk keputusan yang tepat. Pada studi ini, akan
dikembangkan metode MDS untuk (MOLPP) dalam karya Mrakhan et al. (2020). Metode ini bergantung pada
penyematan titik-titik di R*: dimlai dengan membangun matriks dari kumpulan titik, laln gunakan pengelompokan
untuk mengoptimalkan dimensi matriks dan mengonfignrasi titik-titik di R%. Matriks memiliki dimensi (ky X 2),
dimana Ky adalah klaster besar titik-titik. Selain itu, titik pusat dignnakan untnk menemukan titik penskalaan,
kemudian titik pusat tersebut dignnakan untuk menemukan jarak dari titik asal (0,0). Algoritma yang kami
usulkan menawarkan solusi kompromi yang terstrutur dan efisien untuk MOLPP, yang mengungguli metode berbasis
Skalarisasi tradisional.

Kata Kunci: Solusi terpadu; Skala multidimensi; Penrograman linier multiobjetif; Lanjutan optimal; Rata-rata
optimal; Rata-rata kunadratik.

2020MSC: 90C29, 90C90.

1. INTRODUCTION

One of the most critical areas of optimization is multi-objective linear programming (MOLP),
which deals with decision-making issues involving several frequently incompatible objectives [1]. The
primary purpose is to find a solution that achieves these objectives. Efficiently offering a variety of

*) Corresponding author

Submitted April 1%, 2025, Revised May 29, 2025,

Accepted for publication May 30", 2025, Published Online May 31%, 2025

©2025 The Author(s). This is an open-access article under CC-BY-SA license (https://creativecommons.org/licence/by-sa/4.0/)



https://creativecommons.org/licence/by-sa/4.0/
mailto:*ayad.ramadan@univsul.edu.iq

A Multidimensional Approach for Solving Multi-Objective Linear Programming Problems

Pareto-optimal alternatives to decision-makers. Numerous industries, including economics,
engineering, environmental planning, logistics, and healthcare, have used MOLP substantially since
its beginnings [1][2]. Although conventional approaches such as scalarization and transformation
techniques have established groundwork for resolving these issues, difficulties still exist, especially
when working with large-scale, dynamic, and uncertain systems. In recent years, especially from 2021
to 2024, there have been notable developments in MOLP's theoretical and computational facets.

Mrakhan et al. [3] presented a novel method to improve the accuracy and efficiency of solving
MOLP problems. Likewise, Md. Abdul Alim and Marzia Yesmin [4] created a cutting-edge
transformation methodology that enhanced the adaptability and scalability of current MOLP
methods, highlighting its use intricate optimization scenarios, including network design and resource
allocation. These pioneering investigations have added new approaches using probabilistic models
and machine learning. The investigation of hybrid Bayesian optimization by Dogan and Prestwich [5]
offers a strong framework for dealing with bi-level MOLP problems, especially when there is
uncertainty and a hierarchical decision-making process. Q-learning and deep Q-networks are
reinforcement learning approaches used to optimize goals dynamically. Their application in wind
turbine management, where these techniques balance energy production with noise reduction, is a
noteworthy example [6].

To improve the placement of healthcare facilities, for example, Davoodi and Calabrese [7] used
bi-objective integer linear programming models, addressing essential societal requirements, including
reducing commute time and guaranteeing task parity throughout institutions. Similarly, current
evaluations of telecommunication network optimization emphasize the application of multi-objective
algorithms to strike a balance between cost, latency, and reliability to guarantee peak performance in
quickly changing digital infrastructures [8][9].

The improvement of methods has been another crucial area of advancement. At the same time,
[10] and offered average approaches for tackling MOLP problems utilizing multiple mean strategies.
Studies by Sulaiman and Mustafa [11] have used harmonic means to improve the previous methods.
In this paper, we presented a novel method to improve the results of all the previous work using the
multi-dimensional scaling (MDS) method.

2. METHODS
To illustrate the main ideas and concepts, we start with the following definitions:

Definition 1. [12] Let R™ = {x;,..,x,}: x; € R for j = {1,...,n}. Then X = [ x4, ..., x,]" is called a
vector of n dimension.

Definition 2. [13] The numbers or values of the elements in a vector are called scalars.

Definition 3. [14] MDS is one of the dimensionality reduction techniques that convert
multidimensional data into lower-dimensional space while keeping the intrinsic information.

Definition 4. [15] Cluster analysis is an exploratory data analysis tool for organizing observed data
Of cases into two or more groups.
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2.1. Multi-objective Programming Problems Formulation

Subject to certain limitations, the mathematical model can be constructed in the following way
to maximize (minimize) many objectives simultaneously:

Max.Z; =cfx+ B, i=1,..,r,

MinZ;=clx+p; i=r+1,..,m, )
s.t.

X>0,

where X is vector of n-dimension, ¢ is constant vector of n-dimension, 8 is constant vector of m-
dimension, r is number of maximized objective functions, 1 is number of maximized plus minimized
objectives, (r; — r) is number of minimized objectives, cfx + f; i = 1,...,7; linear factors for feasible
solutions, and f; (i =1,...,17) are scalars. Since the objective functions with constraints are linear
and all the variables are continuous, the problem is called a multi-objective linear programming
problem (MOLPP) [16].

2.2. Classical Multidimensional Scaling (MDS)

The proximity between observations to visualize their spatial representation is called
multidimensional scaling [17]. Start with an (G X G) dissimilarity matrix D. To represent the G points
in a low dimension, where the distances d;; between them near the original 6;; means d;; = §j; for all
i,j [18]. One can formulate most MDS problems in terms of the optimization problem. A linear
programming model for external analysis is presented [18][19]. Brusco proposed integer
programming methods for the one-dimensional scaling of proximity matrices [20]. Laeuter and
Ramadan [21] and [22] used optimization techniques to configure categorical data.

2.3. The Principal Concept

The first step in the strategy is to use the simplex method to maximize or minimize each goal
function separately. The ideal values are

Male = wq,
Max Z, = w,,

Max Z, = w,,
MinZ,i1 = Wry1,

MinZ, = wy,.

To form a single objective function and for maximum adding and for minimum subtracting of each

o . zZ; Z; .

result of dividing each z; by w;, where |w;| # 0;,i.e., Max Z = }i_; ﬁ -Yt ITLI [10] and subject
1 1

to the same constraints in (1). All the presented methods aim to minimize the value of w;; different

techniques were used to find a value from w; (i = 1, ...,77) and denote this value by p. Note that as

much as wj is small, the results are better. We have r; objective functions with a bounded feasible
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region. To solve this problem, we used the optimal values of r; objective functions to find a new
compromise objective function. This solution lies in the same feasible region of (1) [23].

The algorithm below characterizes the values of the objective functions individually, and then
we construct ordered pairs that come from the Cartesian product (CP) of maximum and minimum
values. Plot them in R?. So, the points are visualized together in R%. The big cluster means that the
distances between the points are small. This gives the idea to choose it. Choosing a big cluster is
reasonable for this purpose. Let the cluster contain g; points. Now, the dimension of D is (g; X 2),
a matrix of the points of the cluster. Find the configuration points by MDS that are good
approximations of the distances between the rows of D [18][19]. From these points, we find the center
point, and then p is the distance between the origin and center points.

2.4. The Algorithm

Step 1: Plot the CP of individual values of Max.Z; and Min.Z,,
Step 2: Choose the big cluster with g; elements. Construct a matrix D of dimension (g, X 2),
Step 3: Find a Euclidian distance E = [dij], iL,j=1,..,91,
Step 4: A = —0.5 x [d],
Step 5:B = (I — gi ] ) X A, (I - gi ] ) where [ is the identity matrix and ] is the unit matrix, both of
1 1
dimension (g; X g1).
Step 6: A; and v; are eigenvalues and eigenvectors, respectively, for B. Choose two largest eigenvalues.
Step 7: § = (\//1_1 vl,\//l_l v,), the coordinates of the points.
Step 8: Find the center point §*, then p is the distance between (0,0) and S*.

Note that we considered two eigenvalues to configure the points in R?. For details of the algorithm,
see [18].

3. RESULTS

To demonstrate the effectiveness and applicability of the proposed multidimensional approach
in solving MOLPP, we present several numerical examples. These examples are solved using our
method and are compared with results obtained using established methods in the literature.

Example 1: Solve the following (MOLPP)

Max.Z; = 3x1+ 2x,
Max.Z, = 4x1+ x5
Max.Z3 = 4x1 — 2x,
Max.Z, = 15x,+ 4x,

Min.Zs = —6x,+ 2x,
Min.Zg = —9x,+ 3x;
Min.Z, = =5x;+ 2x,
subject to
X1+ x, <4
Xy — X <2
X1, X2 = 0.

Solution:
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By the simplex method, the optimal values are Z; = 11, Z, = 13,Z3 = 10,Z, = 49,Z5 = —16,Z¢ =
—24, and Z; = —13.So, the Cartesian product is the set S=
((11,-16), (11, —24), (11, -13), (13, —16), (13, —24), (13, —13), (10, —16), ( 10, —24), ( 10, —13),
(49,-16), (49, —24), (49, —13)}. There are 12 elements. The plots are shown in Figure 1. From the
graph below, we choose

) 10 20 0 o 2
(11,-13)  (13,-13) -
(10, ]{.1):213 13) (49, 1]):
(11, -16) (13, -16) (49, -16)
(11,-24)  (13,-24) ‘
(10, 31)" * (49, —24) »

Figure 1. Cartesian products of example 1

The points in the big cluster are (11, —16), (11, —24), (11, -13), (13, -16), (13, —24), (13, -13),
(10,—16),(10,—24),(10,—13). So, the mattix D is

D= ( 11 11 11 13 13 13 10 10 10 )t
-16 -24 -13 -16 -24 -13 -16 -24 -13/°

and
o 8 3 2 82 36 1 8 32
8 o0 11 82 2 112 8 1 11
3 11 0 36 112 2 32 11 1
2 82 36 0 8 3 3 85 42
E=[dj]=|82 2 112 8 0 11 85 3 114 |.
36 112 2 3 11 0 42 114 3
1 8 32 3 85 42 0 8 3
8 1 11 85 3 114 8 0 11

32 11 1 42 114 3 3 11 0

Now, A = —0.5 x [d;]

0 —-32 —45 -2 -34 -65 -05 -325 -5
—32 0 —-60.5 —34 -2 -625 -325 -05 -e61
—-4.5 -60.5 0 —-6.5 —-62.5 -2 -5 -61 —0.5
-2 -34 —-65 0 -32 —-45 —-45 =365 -9
A=| -34 -2 =625 32 0 -60.5 —-365 —-45 —-65 |,

-6.5 —-625 -2 —4.5 -60.5 0 -9 —-65 —45
-05 =325 -5 -45 =365 -9 0 —-32 —45
-325 -05 —-61 -365 —45 —65 -32 0 —60.5
-5 -61 05 -9 —-65 —-45 —-45 -605 0
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andB=(1—§])x,4,(1—§1)whichis

2.8889 —10.4444 7.8889 2.2222 —-11.1111 7.2222. 3.2222 —10.1111 8.2222
—10.4444 40.2222 —-29.4444 -11.1111 39.5556 —-30.1111 -10.1111 40.5556 —29.1111\
7.8889 —29.4444 21.8889 7.2222 —30.1111 21.2222 8.2222 —29.1111 22.2222
2.2222 -11.1111 7.2222 5.5556 —7.7778 10.5556 0.5556 —12.7778 5.5556
-11.1111 39.5556 -30.1111 -7.7778 42.8889 —26.7778 —12.7778 37.8889 —31.7778
7.2222 —30.1111 21.2222 10.5556 —26.7778 24.5556 5.5556 —31.7778  19.5556 |
3.2222 —-10.1111 8.2222 0.5556  —12.7778 5.5556 4.5556 —8.7778 9.5556
\—10.1111 40.5556 —-29.1111 -12.7778 37.8889 —-31.7778 —8.7778 41.8889 —27.7778/
8.2222 —-29.1111 22.2222 5.5556 —-31.7778  19.5556 9.5556  —27.7778 23.5556

The largest eigenvalues of B are 4; = 194, 1, = 14, with the corresponding eigenvectors

V; =[0.1197 - 0.4547 0.33500.1197 —0.4547 0.3350 0.1197 —0.4547 0.3350]"
V,=[0.0891 0.0891 0.0891 —0.4454 —0.4454 - 0.4454 0.3563 0.3563 0.3563],t

respectively. The coordinates of the points are

1 0.1197 1 r 0.0891 1 1.667 0.333

—0.4547 0.0891 —6.333 0.333

0.3350 0.0891 4.666 0.333
0.1197 —0.4454 1.667 —1.666
S =] V194 x|—-0.4547|,V14 x [-0.4454 =] —6.333 —1.666
0.3350 —0.4454 4.666 —1.666

0.1197 0.3563 1.667 1.333

—0.4547 0.3563 —6.333 1.333

- 0.3350 - - 0.3563 - 4.666 1.333

— 9 . y9 .
So, we have 9 points in R? find the center point, say S*= (¥ y) = (%,%) =
(2.9000 x 10716,3.3333 x 107°), and the distance between S* and the origin (0,0) is p = 0.00003
which is our divided factor. Therefore

Zoptimal = 453333.3 at x; =3, X, = 1.
Example 2: Solve the following (MOLPP)

Max.Z, = 4x1+ 2x,
Max.Z, = 3x,1+ 6x,
Max.Z3; = —8x4 + 6x,
Min.Z, = 5x1 — 7x,
Min.Zs = 2x; — 8xy,
subject to
2x,+ 6x, <10
4x, — 2x, <4
X1, Xy = 0.

Solution:

By the simplex method, the optimal values are Z; =8.5,Z, = 11.57, Z3 = 10, Z, = —11.6, and
Zs = —13.3. So, the Cartesian product is the set S = {(8.5,—11.6), (8.5,—13.3), (11.57,—-11.62),
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(11.57,-13.3),(10,—-11.6), (10, —13.3)}. From Figure 2, we choose the big cluster.

o 5 10 15

(1 11.6) (11.57 11.62)
(10 13.3)

(8.5, —13.3) (11.57, —13.3)

Figure 2. Cartesian products of example 2

The points in the big cluster are all the points: {(8.5,—11.6), (8.5,—13.3), (11.57,-11.62),
(11.57,—13.3), (10, —11.6), (10, —13.3)}. The matrix D is

t
D= ( 8.5 8.5 11.57 11.57 10 10 ) ,

-11.6 -133 -11.62 -13.3 -11.6 -—-13.3

and
0 1.73 3.09 4.8 1.5 3.2

1.73 0 478 3.07 3.23 153
309 478 0 171 159 3.25

E=ldy| = 48 307 171 0 33 16
15 323 159 33 0 17
32 153 325 16 17 0
Now, A= -0.5x [df;
0 —1.4965 —4.774 —1152 —1.125 —5.12
—1.4965 0 —11.4242 —4.7125 -5.2165 —1.1704
A —4.774 —11.4242 0 —1.4621 —1.264 —5.2813
—11.52 —4.7125  —1.4621 0 —5.4450 —1.28 |
\ —1.1250 —52165 —1.264  —5.445 0 —1.445/
—5.12 —1.1704 —5.2813 —1.28 —1.445 0

andB=(I—%])><A,(I—%]):

3.0659 1.5723 —1.6280 -—3.1043 0.7809 —0.6868
1.5723 3.0717 -3.0869 -1.6050 —0.7127 0.7606
—-1.6280  —3.0869 3.1034 1.6613 0.6920 -0.7417
—3.1043 —-1.6050 1.6613 3.1433 —-0.7843 0.6890
0.7809  —-0.7127 0.6920 —0.7843 0.7459 —-0.7218
—0.6868 0.7606 —-0.7417 0.6890 —0.7218 0.7006

The largest eigenvalues of B are 1; = 9.4267 , A1, = 4.4039, with the corresponding eigenvectors
V; =[ 0.4979 0.4944 —0.5020 — 0.5055 0.0094 0.0059]*,
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V, =1[0.4068 — 0.4175 0.4065 — 0.4083 0.4113 — 0.3987]t

respectively. The coordinates of the points are

0.4979 0.4068 1528 0853
0.4944 —0.4175 1517 —0876
~ —0.5020 0.4065 | 1541 0853
§=[ V94267 x| enss | VEA039X] 04083 | T | 1552 —0.856
0.0094 0.4113 0.028 0.863
0.0059 —0.3987 0.018 —0.836

So, we have 6 points in R?, find the center point, $* = (—0.002,0.001), and the distance between S*

and the origin (0,0) is p = 0.00022, which is our divided factor. Therefore

5
Zoptimal = 142156861 at x; =0 ,x; = .

In the following Table 1, we compare the results obtained by quadratic average, optimal advanced
transformation, optimal average, multi-dimensional scaling.

Table 1. Comparison of different methods

Examples Quadratic Optimal Advanced Optimal MDS
Average Transformation average
Example 1 7" = 6.04 7Z*=13.6 Z*=11.82 7" = 453333
X1=3,X2=1 X1=3,X2=1 X1=3,X2=1 X1:3,X2=1
Example 2 7" =4313 7* = 5.685 7" =4.808 7* = 142156
5 5
X1=0,X2=§ X1=0;X2=§ X1=0’X2=§ X1=0’X2=§

Notes:
1. If the objective functions are all in max case, then the Cartesian products will be in real line. In
this case the problem is easier to solve.
2. As much as the cluster is big (contains most of the points), then the result is better. Otherwise,
* .
the Zgptimar is small.

4. DISCUSSION

The proposed multidimensional scaling (MDS) method offers significant improvements over
several prior approaches to solving multi-objective linear programming problems (MOLPP). For
instance, compared to the transformation technique by [4] and [24], the MDS method integrates spatial
and geometric information through clustering and scaling. This makes it more intuitive for decision-
makers, especially in complex decision environments where multiple competing objectives must be
reconciled visually and computationally.

Furthermore, while the average-based strategies proposed by [11][25] and improved by [10], they
lack a graphical interpretation and do not capture the spatial relationships between feasible solutions.
The MDS-based approach introduced in this study addresses this limitation by mapping solutions into
a lower-dimensional Fuclidean space, allowing the identification of central compromise points with
preserved relative distances. This visualization capability makes the MDS approach more insightful,
particularly when identifying Pareto-optimal clusters.

The algorithm also contrasts with the optimization-based methods by Mrakhan et al. [3] and
Dogan and Prestwich [5], which focus on bilevel and probabilistic frameworks. While these methods
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are effective in hierarchical or uncertain environments, they often require extensive computational
resources and model-specific adjustments. In contrast, the MDS approach balances computational
efficiency with solution interpretability. By incorporating eigenvalue decomposition and cluster
analysis, it generates compromise solutions that not only satisfy the mathematical rigor but also
enhance decision clarity across a wide range of practical applications.

5. CONCLUSIONS

We have studied MOLPP by using MDS. This method converts the cartesian products of the
optimal values for the objective functions to the points in R2. This method keeps the distances

between the points. The results show a significant difference compared with other methods, as shown
in Table 1.
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