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Abstract  
Federated learning (FL) has become a promising paradigm for collaborative machine learning that 
preserves the privacy of distributed data sources. However, implementing privacy-preserving federated 
learning (PPFL) in real-world settings poses several critical challenges, particularly in balancing 
communication efficiency, strong privacy guarantees, and reliable model performance. These issues are 
further exacerbated in non-IID (non-independent and identically distributed) environments, which are 
common in decentralized data scenarios. This study introduces a scalable framework for PPFL that 
incorporates an adaptive mechanism to optimize trade-offs among communication, privacy, and 
performance, tailored to dynamic, resource-constrained settings. The proposed framework integrates 
advanced differential privacy techniques with efficient communication strategies and employs robust 
aggregation algorithms to address data heterogeneity. Analytical evaluations highlight the scalability and 
effectiveness of the approach, while experimental validations demonstrate its advantages in terms of 
privacy-accuracy trade-offs across diverse datasets, including applications in healthcare and IoT. This 
work contributes to enhancing the practicality of FL systems by demonstrating a 6.5% accuracy 
improvement on CIFAR-10 in non-IID settings, maintaining 87.2% accuracy at a strict privacy budget 
of ε=1.0, and reducing communication overhead by 40% compared to baselines, addressing key barriers 
to deployment and setting a foundation for future research in dynamic, privacy-preserving machine 
learning systems. 
Keywords: Adaptive algorithms; Data heterogeneity; Differential privacy; Distributed systems; 

Scalability. 

 

Abstrak 
Pembelajaran terfederasi (Federated learning) telah menjadi paradigma yang menjanjikan untuk pembelajaran mesin 
kolaboratif yang menjaga privasi sumber data terdistribusi. Namun, penerapan pembelajaran terfederasi yang menjaga 
privasi (PPFL) dalam dunia nyata menghadapi beberapa tantangan kritis, terutama dalam mencapai keseimbangan 
antara efisiensi komunikasi, jaminan privasi yang kuat, dan kinerja model yang andal. Masalah-masalah ini semakin 
diperparah dalam lingkungan non-IID (non-independen dan terdistribusi identik), yang umum terjadi dalam skenario 
data terdesentralisasi. Artikel ini memperkenalkan kerangka kerja yang skalabel untuk PPFL yang menggabungkan 
mekanisme adaptif untuk mengoptimalkan trade-off antara komunikasi, privasi, dan kinerja, yang disesuaikan dengan 
pengaturan dinamis dan terbatas sumber daya. Kerangka kerja yang diusulkan mengintegrasikan teknik privasi 
diferensial tingkat lanjut dengan strategi komunikasi yang efisien dan menggunakan algoritma agregasi yang tangguh 
untuk mengatasi heterogenitas data. Evaluasi analitis menyoroti skalabilitas dan efektivitas pendekatan ini, sementara 
validasi eksperimental menunjukkan keunggulannya dalam hal trade-off privasi-akurasi di berbagai set data, termasuk 
aplikasi di bidang kesehatan dan IoT. Hal ini berkontribusi dalam meningkatkan kepraktisan sistem FL dengan 
menunjukkan peningkatan akurasi sebesar 6,5% pada CIFAR-10 dalam pengaturan non-IID, mempertahankan 
akurasi sebesar 87,2% pada anggaran privasi yang ketat sebesar ε=1,0, dan mengurangi overhead komunikasi sebesar  
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40% dibandingkan dengan model dasarnya, mengatasi hambatan utama untuk penerapan dan menetapkan landasan 
untuk penelitian selanjutnya dalam sistem pembelajaran mesin yang dinamis dan menjaga privasi. 
Kata Kunci: Algoritma adaptif; Heterogenitas data; Privasi diferensial; Sistem terdistribusi; Skalabilitas. 
 
2020MSC: 68T07, 68W15. 
 
 

1. INTRODUCTION 

The remarkable progress in machine learning (ML) over recent years has opened new 
opportunities across diverse sectors such as healthcare, finance, and the Internet of Things (IoT). 
These advancements have enabled data-driven systems to make accurate predictions and decisions, 
fundamentally transforming traditional processes. However, conventional ML approaches often rely 
on aggregating data on a centralized server for training, raising serious concerns about privacy and 
data security. With the growing implementation of regulations such as the General Data Protection 
Regulation (GDPR) in Europe and the Health Insurance Portability and Accountability Act (HIPAA) 
in the United States, organizations are under increasing pressure to safeguard sensitive data while 
leveraging it effectively for innovation. 

Federated learning (FL) addresses these concerns by allowing collaborative model training across 
multiple decentralized clients without transferring raw data to a central server. Instead, only model 
updates or parameters are exchanged, preserving the confidentiality of the underlying data. However, 
despite these benefits, FL is not inherently secure against certain types of attacks. For instance, 
malicious actors can exploit model updates to reconstruct private information through techniques 
such as model inversion or inference attacks [1]. To mitigate such risks, privacy-preserving federated 
learning (PPFL) incorporates robust mechanisms such as differential privacy (DP) and secure 
multiparty computation (SMPC), which enhance the protection of individual data while enabling 
collaborative training. 

The deployment of PPFL in practical applications remains challenging due to the inherent trade-
offs it entails. One of the primary issues is finding an optimal balance between communication 
efficiency, model performance, and privacy guarantees. Stronger privacy measures, such as adding 
noise for differential privacy, often reduce the accuracy of the trained model. Similarly, frequent 
communication between clients and servers to exchange updates places significant bandwidth 
demands, making the approach less viable in resource-constrained environments [2]. hese challenges 
are particularly pronounced in non-IID (non-independent and identically distributed) environments, 
where data diversity across clients can significantly degrade model performance [3]. 

Scalability is another pressing concern in FL systems, particularly in scenarios with thousands or 
even millions of participants. Traditional aggregation strategies, such as Federated Averaging, may 
struggle with the computational demands and network limitations of large-scale deployments. 
Furthermore, dynamic environments, characterized by intermittent client participation and fluctuating 
resource availability, require adaptive frameworks that can handle this variability without 
compromising privacy or accuracy. 

In the context of national priorities, privacy-enhancing machine learning technologies are 
increasingly critical for ensuring secure data utilization in sensitive domains. The United States, for 
example, has prioritized advancements in privacy-aware systems for sectors such as healthcare and 
national defense. In healthcare, PPFL could enable cross-institutional collaboration while preserving 
patient record confidentiality, facilitating groundbreaking research without compromising privacy. In 
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IoT environments, PPFL can enhance data-sharing protocols among connected devices while 
minimizing the risks of data leakage, creating a smarter, more secure infrastructure. Recent work has 
demonstrated PPFL's efficacy in collaborative medical data mining across multi-institutional settings 
[4], underscoring its role in addressing these priorities. 

This study addresses these challenges by proposing a scalable, privacy-enhanced federated 
learning framework that balances trade-offs among communication efficiency, privacy guarantees, and 
model performance, particularly in non-IID scenarios. The framework introduces an adaptive 
mechanism that dynamically adjusts to application requirements and system constraints, ensuring 
practical deployment. Key features include integrating differential privacy techniques with 
communication-efficient aggregation strategies and advanced algorithms to effectively handle 
heterogeneous client data. 

The structure of this paper is as follows: Section 2 reviews the existing literature on privacy-
preserving federated learning, emphasizing current limitations. Section 3 outlines the proposed 
framework, detailing its theoretical underpinnings and unique contributions. Experimental results and 
evaluations are presented in Section 4, demonstrating the framework's performance across various 
datasets. Section 5 provides an in-depth discussion of the findings, technical challenges, and 
implications, while Section 6 concludes the study with a summary of contributions and suggestions 
for future research. 

1.1. Related Work 

Privacy-preserving federated learning (PPFL) has gained traction as a method for training 
machine learning models collaboratively across decentralized clients while preserving data privacy. 
This section reviews prior research on privacy mechanisms, communication efficiency, aggregation 
strategies for non-IID data, and scalability in PPFL frameworks. It also highlights gaps in existing 
approaches that motivate this study. 

Ensuring data privacy during federated learning has been the focus of extensive research, leading 
to the development of various mechanisms. Differential privacy (DP) has emerged as one of the most 
prominent solutions, adding noise to shared updates or gradients to obscure individual data 
contributions. For instance, the DP-SGD algorithm, originally proposed by Abadi et al. [1], was 
adapted for FL systems to safeguard privacy during gradient descent. However, adding noise often 
reduces the accuracy of the final model, particularly with complex datasets. 

Secure Secure multiparty computation (SMPC) offers an alternative approach by enabling 
computations on encrypted data, ensuring that sensitive information remains inaccessible to both the 
server and other clients. Bonawitz et al. [5] developed a cryptographic aggregation protocol for FL 
systems, which effectively prevents unauthorized access to individual updates. Despite its robust 
privacy guarantees, SMPC often incurs high computational costs, making it unsuitable for resource-
constrained devices. 

Other Other strategies, such as homomorphic encryption and trusted execution environments, 
have been explored to further enhance privacy. However, these methods often face scalability and 
compatibility challenges across diverse hardware configurations, limiting their adoption in large-scale, 
real-world applications. 

Communication efficiency is a critical concern in federated learning, as frequent exchanges of 
model updates between clients and servers can place significant strain on bandwidth. One widely used 
solution is Federated Averaging (FedAvg), introduced by McMahan et al. [6], which reduces 
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communication costs by allowing clients to perform multiple local updates before sharing model 
parameters with the server. Although effective, FedAvg struggles with data heterogeneity and non-
IID distributions, leading to performance degradation. 

To address the bandwidth issue, various compression techniques have been proposed. Konečny 
et al. [7] demonstrated the use of sparsified and quantized updates to reduce communication overhead 
while maintaining reasonable model accuracy. Despite their benefits, these approaches often slow 
convergence, particularly in complex learning tasks. 

Another approach involves selective participation, in which only a subset of clients participates 
in each training round. For instance, FedCS, proposed by Nishio and Yonetani [8], dynamically selects 
clients based on their availability and resource capacity, thereby optimizing the allocation of 
communication resources. However, selective participation can introduce bias into the training 
process, particularly when the selected clients do not adequately reflect the overall data distribution. 

Data heterogeneity, or non-IID distributions across clients, is a well-known challenge in federated 
learning. Local data often reflects specific user behaviors or environments, causing inconsistencies in 
model updates. To mitigate this issue, some researchers have explored data-sharing strategies, such as 
distributing a small fraction of globally representative data to all clients. Zhao et al. [9] demonstrated 
that such strategies can improve model convergence but may compromise privacy principles. 

Another approach is personalized federated learning, in which the global model is fine-tuned for 
each client. Fallah et al. [10] developed a hybrid framework that combines global and local models to 
better accommodate client-specific data distributions. Although this approach enhances model 
accuracy, it introduces additional computational complexity and requires careful optimization to 
balance the contributions of global and local updates. 

FedProx, proposed by Li et al. [11], tackles data heterogeneity through regularized optimization. 
By constraining local updates to remain close to the global model, FedProx improves training stability. 
However, this method does not fully address the scalability challenges associated with large-scale 
federated systems. Recent optimizations have built on this by introducing poisoning countermeasures 
specifically for non-IID FL with preserved privacy stability [12], though integration with scalability 
remains limited. 

The scalability of federated learning frameworks is crucial for supporting large numbers of clients. 
Traditional methods like FedAvg are often limited by the computational and communication overhead 
associated with scaling. To address this, Yang et al. [13] introduced a hierarchical aggregation scheme 
that reduces the workload on the central server by distributing it across intermediate aggregators. 
While effective, this approach requires additional infrastructure and coordination, which may not be 
feasible in all scenarios. 

Adaptive frameworks have also been explored to accommodate the dynamic nature of real-world 
federated learning environments. Wang et al. [14] proposed a resource-aware federated learning 
framework that adjusts the training process based on client capabilities, such as computational power 
and network availability. Recent reviews have further emphasized the need for lightweight 
architectures in cloud-edge-end collaborations to enhance privacy and scalability in such dynamic 
settings [15]. While promising, such frameworks often lack integrated mechanisms to ensure privacy 
preservation in dynamic settings, leaving room for further innovation. 
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1.2. Research Gaps 

Despite significant advancements in PPFL, several challenges remain unresolved. Current 
research often focuses on isolated aspects, such as improving privacy or communication efficiency, 
without adequately addressing their interplay. As highlighted in recent surveys on privacy-preserving 
collaborative intelligence [16], the presence of non-IID data and scalability requirements further 
complicates the design of comprehensive solutions. The presence of non-IID data and scalability 
requirements further complicates the design of comprehensive solutions. Moreover, existing 
frameworks rarely account for the dynamic nature of real-world environments, where client availability 
and resource constraints fluctuate over time. Addressing these gaps is essential for advancing the 
practical adoption of federated learning systems. For instance, existing DP mechanisms often result 
in accuracy drops of 5-10% in non-IID settings at ε <5.0 [1], while communication compression 
techniques increase convergence time by up to 2x in heterogeneous environments [7]. Moreover, 
scalability frameworks experience over 50% overhead increases before handling fewer than 100 clients 
[11][12], highlighting measurable gaps in integrating these aspects without exceeding 20% 
performance degradation. 

 
2. METHODS 

This section introduces the proposed scalable and privacy-enhanced federated learning 
framework, which addresses the trade-offs between privacy, communication efficiency, and model 
performance in non-IID environments. The methodology is designed to ensure adaptability and 
scalability while maintaining robust privacy guarantees. 

The proposed framework comprises three primary components: 
1. An adaptive mechanism that dynamically optimizes privacy, communication, and performance 

trade-offs based on real-time system constraints. 
2. A communication-efficient aggregation strategy that incorporates gradient sparsification and 

quantization to reduce bandwidth requirements. 
3. A robust optimization algorithm tailored for non-IID data, integrating differential privacy 

techniques to safeguard sensitive information. 
The following pseudocode outlines the main steps of the proposed scalable and privacy-enhanced 

federated learning framework: 

Algorithm 1. Scalable and Privacy-Enhanced Federated Learning Framework 

Input: Client datasets {D_1, D_2, …, D_N}, initial model weights w_0, number of communication rounds T, 
privacy budget ε, sparsification threshold k, quantization step size Δ. Output: Global model weights w_T. 1: 
Initialize w_0 on the server. 2: For each client i = 1 to N: 3: Analyze local dataset D_i for heterogeneity (e.g., 
compute label distribution skewness). 4: Preprocess D_i (e.g., normalize data, handle missing values) to ensure 
compatibility with model training. 5: For each round t = 1, 2, …, T: 6: Select a subset of active clients S_t based 

on availability and heterogeneity scores. 7: For each client i ∈ S_t in parallel: 8: Perform local training on D_i 
to compute gradients g_i. 9: Apply gradient sparsification g_i ← Top-k(g_i). 10: Quantize gradients g_i ← 
Quantize(g_i, Δ). 11: Add noise for differential privacy g_i ← g_i + N(0, σ²). 12: Send g_i to the server. 13: 

Aggregate gradients: g_t ← ∑{i ∈ S_t} (n_i / ∑{j ∈ S_t} n_j) g_i. 14: Update global model: w_t ← w_{t-1} - 
η g_t. 15: End For 16: Evaluate final model w_T on validation data to meet objectives (e.g., achieve target 
accuracy under privacy budget ε). 17: Return w_T. This pseudocode provides a concise representation of the 
key components, including local updates, privacy integration, and global aggregation. 
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This pseudocode provides a concise representation of the key components, including local updates, 
privacy integration, and global aggregation. 

2.1. Adaptive Privacy-Communication Trade-Off Mechanism 

To dynamically balance privacy and communication efficiency, the framework employs an 
adaptive mechanism that optimizes a multi-objective cost function. The cost function, J, is defined as: 

 𝐽 = 𝛼 ⋅ 𝐶comm + 𝛽 ⋅ 𝛥privacy + 𝛾 ⋅ 𝐿model, (1) 

where 𝐶comm represents the communication cost, 𝛥privacy quantifies privacy leakage risk, 𝐿model dentes 

model loss, 𝛼, 𝛽, 𝛾 are weighting factors in the interval [0,1] (normalized such that 𝛼 + 𝛽 + 𝛾 = 1) that 
adapt to system requirements, selected via grid search or reinforcement learning based on real-time 
metrics like current bandwidth usage, desired ε, and validation accuracy thresholds. This multi-
objective cost function is justified by its alignment with optimization theory in distributed systems, 
where trade-offs are modeled as weighted sums to enable Pareto-efficient solutions. The adaptive 
nature of 𝛼, 𝛽, and 𝛾 allows the framework to prioritize objectives dynamically, derived from 
Lagrangian multipliers in constrained optimization problems, ensuring convergence under bounded 
gradients as proven in federated settings [3]. 

The communication cost, 𝐶comm, is modeled as: 

 𝐶comm =
‖𝑤𝑡−𝑤𝑡−1‖0

𝑑
, (2) 

where 𝑤𝑡 and 𝑤𝑡−1 are model weights at rounds 𝑡 and 𝑡 − 1, 𝑑 is the total dimension of the model, 
and 0 denotes the zero-norm, which counts the number of non-zero elements in the vector (𝑤𝑡 −
𝑤𝑡−1). The zero-norm provides a measure of sparsity, reflecting the proportion of significant updates 
that must be transmitted. This formulation captures the sparsity of weight updates, promoting efficient 
transmission through gradient sparsification. This modeling choice is mathematically justified by the 
zero-norm's role in promoting sparsity, which reduces the effective dimensionality of updates and is 
supported by compressive sensing theory, where sparse signals can be recovered with high fidelity [7].  

Privacy leakage risk, 𝛥privacy, is quantified using Rényi Differential Privacy (RDP) [17], expressed 

as: 

 𝛥privacy =
𝜖

𝜎2, (3) 

where 𝜖 is the privacy budget, and 𝜎2 represents the noise variance added to the model updates. This 
ensures a tunable trade-off between privacy and accuracy. The use of RDP over traditional (ε, δ)-DP 
provides tighter privacy accounting, as RDP's composition properties yield sublinear accumulation of 
privacy loss over iterations, mathematically derived from the Rényi divergence's additivity [17]. 

The privacy budget ε inversely relates to model accuracy, as lower ε requires higher σ², increasing 
noise and potentially reducing accuracy by 2-5% per unit decrease in ε based on sensitivity analysis [1]. 
Conversely, σ² scales with 1/ε², ensuring a quadratic relationship that balances utility and privacy under 
fixed iteration counts. Model loss, 𝐿model, is defined using a regularized objective function: 
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 𝐿model =
1

𝑁
∑ 𝐿𝑁

𝑖=1 (𝑤, 𝐷𝑖) + 𝜆‖𝑤‖2, (4) 

where 𝐿(. ) is the local loss function, 𝐷𝑖 represents the dataset of client 𝑖, and 𝜆 is a regularization 
parameter to prevent overfitting. This regularization is justified by proximal optimization principles, 
preventing divergence in non-IID settings, with 𝜆 selected via cross-validation to minimize 
generalization error as per statistical learning theory [10]. 

2.2. Communication-Efficient Aggregation 

Gradient sparsification is applied to reduce the size of transmitted updates. Only the top 𝑘% of 
gradients with the largest magnitudes are retained, and the remaining values are set to zero. 
Mathematically: 

 𝑔sparse = Top-k(𝑔), (5) 

where 𝑔 represents the gradient vector, and Top-k(. ) selects the largest 𝑘% entries. The top-k selection 
is mathematically grounded in the observation that gradients follow a heavy-tailed distribution in deep 
learning, allowing approximation with minimal l2-norm error, as analyzed in sparse gradient descent 
literature [6]. 

Quantization further compresses the updates by mapping gradient values to a finite set of levels. 
Let 𝑞 denote the quantized gradient: 

 𝑞 = round(
𝑔

𝛥
) ⋅ 𝛥, (6) 

where 𝛥 is the quantization step size. This reduces communication overhead without significant loss 
in model performance. Quantization levels are derived from uniform scalar quantization theory, where 
Δ balances precision and compression rate, ensuring bounded quantization error proportional to Δ/2 
under uniform distribution assumptions [7].  

To address non-IID data, the server employs a weighted aggregation method: 

 𝑤𝑡+1 = ∑
𝑛𝑖

∑ 𝑛𝑗
𝑁
𝑗=1

𝑁
𝑖=1 𝑤𝑖 , (7) 

where 𝑛𝑖 is the number of data points held by client 𝑖, and 𝑤𝑖 represents the local model weights of 
client 𝑖. 

2.3. Differential Privacy Integration 

To ensure privacy, Gaussian noise is added to aggregated updates: 

 𝑤𝑡+1 = 𝑤𝑡+1 + 𝑁(0, 𝜎2), (8) 

where 𝑁(0, 𝜎2) denotes Gaussian noise with zero mean and variance 𝜎2. The noise is calibrated based 
on the desired privacy budget, ϵ, ensuring compliance with differential privacy guarantees. The 
Gaussian noise variance σ² is calibrated using the Gaussian mechanism's privacy guarantee, where       
σ² ≥ (2 log(1.25/δ))/ε² for (ε, δ)-DP, ensuring differential privacy while minimizing utility loss through 
moment accountant methods [1]. 

The privacy budget 𝜖 is analyzed using the composition theorem for DP [18]. For 𝑇 
communication rounds, the effective privacy budget is: 
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 𝜖𝑡𝑜𝑡𝑎𝑙 = √𝑇. 𝜖𝑟𝑜𝑢𝑛𝑑,                                                         (9) 

where 𝜖𝑟𝑜𝑢𝑛𝑑 is the budget for a single round. This ensures cumulative privacy preservation over 
multiple iterations. 

2.4. Scalability and Adaptability 

To enhance scalability, the framework incorporates hierarchical aggregation, where intermediate 
nodes aggregate updates from subsets of clients. The aggregation at level 𝑙 is expressed as: 

 𝑤𝑙 =
1

𝐾
∑ 𝑤𝑖,𝑙

𝐾
𝑖=1 , (10) 

where 𝐾 represents the number of clients at level 𝑙. Dynamic client participation is facilitated by 
assigning participation probabilities based on resource availability and data heterogeneity: 

 𝑃𝑖 =
𝑅𝑖

∑ 𝑅𝑗
𝑁
𝑗=1

, (11) 

where 𝑅𝑖 is the resource availability score for client 𝑖. 

3. RESULTS 

This section presents the experimental results of the proposed scalable and privacy-enhanced 
federated learning (FL) framework. The evaluation focuses on three key aspects: model performance 
in non-IID environments, privacy-accuracy trade-offs, and communication efficiency. Each 
experiment is accompanied by detailed visualizations to illustrate the framework’s effectiveness. The 
experiments were conducted on three widely used datasets: 
1. CIFAR-10: A dataset of 60,000 images classified into 10 categories, commonly used for computer 

vision tasks. 
2. MNIST: A dataset of handwritten digits with 70,000 grayscale images. 
3. Healthcare IoT (H-IoT): A simulated dataset of sensor readings from IoT devices for predicting 

patient health metrics. 

The proposed framework was compared with the following baseline methods: 
1. FedAvg [6]: The standard federated averaging algorithm. 
2. FedProx [10]: A regularized optimization method for non-IID data. 
3. DP-FL [1]: A federated learning method integrating differential privacy. 

The following metrics were used: 
1. Model Accuracy: The percentage of correctly classified instances. 

2. Privacy-Accuracy Trade-off: Measured using the privacy budget (ϵ) and test accuracy. 
3. Communication Overhead: Evaluated as the total size of transmitted updates during training. 

3.1. Model Performance in Non-IID Settings 

Figure 1 shows the test accuracy of the proposed framework compared to baseline methods on 
non-IID partitions of CIFAR-10 and MNIST datasets. The non-IID setup was simulated by assigning 
clients subsets of data with varying label distributions. The proposed framework achieved an average 
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accuracy improvement of 6.5% on CIFAR-10 and 5.8% on MNIST over FedAvg. FedProx showed 
better performance than FedAvg but was unable to match the robustness of the proposed framework 
in highly heterogeneous environments. 

 

Figure 1. Model Accuracy Comparison 

3.2. Privacy-Accuracy Trade-offs 

The trade-off between privacy and accuracy was evaluated by varying the privacy budget (𝜖) in 
the differential privacy mechanism. Figure 2 depicts the relationship between privacy budgets and 
model accuracy for the CIFAR-10 dataset. To analyze the behavior at larger privacy budget values  

ϵ > 5.0 , additional experiments were conducted for ϵ = 10 and ϵ = 20. The results indicate that as ϵ 
increases, the noise added to gradients decreases, leading to improved model accuracy. For example, 
at  ϵ = 10, the accuracy on the CIFAR-10 dataset increased to 89.5%, while at ϵ = 20, it reached 
90.1%, closely matching non-private baselines. However, the trade-off is a reduction in privacy 

guarantees, as higher ϵ values correspond to weaker privacy levels. These findings highlight the 
framework’s flexibility in balancing privacy and performance based on application requirements. With 
a stricter privacy budget (ϵ = 1.0), the proposed framework achieved 87.2% accuracy, outperforming 
DP-FL by 4.3%. At moderate privacy budgets (ϵ = 5.0), the framework maintained accuracy levels 
comparable to non-private baselines. 

 

Figure 2. Privacy-Accuracy Trade-Off 
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3.3. Communication Efficiency 

To evaluate communication efficiency, we measured the total size of model updates transmitted 
during training. Figure 3 illustrates the reduction in communication overhead achieved by the 
proposed framework compared to baseline methods. In Figure 3, the sparsification threshold 𝑘 was 
set to 20%, and the quantization step size Δ was set to 0.01. These values were chosen empirically to 
balance communication overhead and model performance. Specifically, retaining the top 20% of 
gradients ensures that the most significant updates are transmitted, while the 0.01 quantization step 
size reduces the size of gradient values without substantial loss of information. Compared to FedAvg, 
which transmits full gradients, and FedProx, which does not employ quantization, the proposed 
method achieves a 40% reduction in communication overhead. While these values were effective in 
our experiments, further tuning of 𝑘 and Δ may yield optimal results for specific datasets and 
applications. We find that the use of gradient sparsification and quantization reduced communication 
overhead by 40% compared to FedAvg. FedProx and DP-FL showed moderate reductions but lacked 
the adaptive optimization of the proposed framework. 

 

Figure 3. Communication Overhead Comparison 

 

3.4. Scalability and Client Participation 

The scalability of the framework was tested by varying the number of participating clients.     
Figure 4 presents the model accuracy and communication cost as a function of the number of clients. 
This figure show that the framework maintained consistent accuracy across up to 500 clients, 
demonstrating robust scalability and communication costs increased sublinearly, attributed to 
hierarchical aggregation and adaptive client selection. 

3.5. Robustness to Dynamic Client Participation 

Dynamic participation was simulated by randomly activating and deactivating clients during 
training. Figure 5 shows the framework's performance under dynamic client availability compared to 
FedAvg and FedProx. This figure shows that the proposed framework achieved 3.8% higher accuracy 
on average under dynamic conditions, highlighting its adaptability and FedAvg exhibited significant 
accuracy drops due to uneven participation rates. 
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Figure 4. Scalability Analysis 

 

Figure 5. Performance Under Dynamic Client Participation 

The experimental findings demonstrate the following (1) Superior Accuracy: The proposed 
framework consistently outperformed baselines in non-IID environments and dynamic participation 
scenarios; (2) Effective Privacy-Accuracy Balance: Differential privacy integration achieved robust 
privacy guarantees with minimal accuracy loss; (4) Communication Efficiency: Gradient sparsification 
and quantization reduced communication costs significantly, enabling scalable deployment; and (5) 
Scalability: The framework scaled effectively to large client populations while maintaining 
performance. 

The relationship between number of clients, model accuracy, and communication cost is 
quantified via logarithmic curve fitting: communication 𝑐𝑜𝑠𝑡 ≈ 𝑎 log(𝑛𝑐𝑙𝑖𝑒𝑛𝑡𝑠) + 𝑏 (with R²=0.92, 
indicating strong sublinear growth), while accuracy stabilizes with a sigmoid fit (correlation coefficient 
ρ=0.85 between clients and accuracy under fixed privacy budget ε=5.0), demonstrating balanced trade-
offs in privacy-constrained scaling. 
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4. DISCUSSION 

The results presented in the previous section demonstrate the effectiveness of the proposed 
scalable and privacy-enhanced federated learning (FL) framework. This section delves deeper into the 
implications of these findings, analyzes the observed trends, discusses limitations, and identifies 
opportunities for future research. 

The proposed framework exhibited superior model performance across all non-IID datasets 
compared to baseline methods, such as FedAvg and FedProx. This improvement can be attributed to 
adaptive mechanisms, i.e. the dynamic optimization of privacy, communication, and model accuracy 
trade-offs ensured that the framework was able to adjust to varying client capabilities and data 
distributions. Besides that, robust aggregation strategies, i.e. weighted aggregation tailored for non-
IID data effectively minimized the negative impact of data heterogeneity on model convergence. 

In scenarios with severe data imbalance, the framework maintained consistent accuracy, indicating 
its robustness. This underscores its potential for applications in diverse environments, such as 
healthcare and IoT, where data heterogeneity is prevalent. The integration of differential privacy (DP) 
techniques achieved a favorable balance between privacy guarantees and model accuracy. By 
employing Rényi Differential Privacy (RDP), the framework provided quantifiable privacy metrics 
while preserving performance. Unlike traditional DP methods that degrade accuracy significantly at 

stricter privacy budgets (𝜖), the proposed approach achieved competitive accuracy even at 𝜖 = 1.0. 
This capability highlights the framework’s suitability for applications requiring stringent privacy 
compliance, such as cross-institutional healthcare research and financial systems. 

The use of gradient sparsification and quantization significantly reduced communication 
overhead. This efficiency is critical in FL applications involving resource-constrained devices, such as 
smartphones or IoT sensors. By transmitting only the most relevant updates, the framework optimized 
bandwidth usage without compromising accuracy. Furthermore, hierarchical aggregation 
demonstrated its potential to scale FL systems to hundreds of clients while maintaining sublinear 
growth in communication costs. This scalability ensures feasibility in large-scale deployments, such as 
national healthcare networks or smart city infrastructures. 

The ability to train models collaboratively while preserving patient privacy is transformative for 
the healthcare sector. The proposed framework enables hospitals and research institutions to share 
insights without exposing sensitive data, facilitating advancements in disease prediction, personalized 
medicine, and public health monitoring. For instance, dependable deep FL models have been applied 
to identify new infections from genome sequences while maintaining privacy [19], aligning with our 
framework's potential in similar domains. 

IoT ecosystems generate vast amounts of distributed data from diverse devices, ranging from 
industrial sensors to wearable health monitors. By leveraging the proposed framework, IoT networks 
can collaboratively train models to improve operational efficiency and provide predictive insights 
while ensuring data privacy and efficient resource utilization. 

In financial applications, privacy-preserving analytics are essential for fraud detection, credit risk 
assessment, and personalized financial services. The framework’s ability to handle non-IID data and 
dynamic participation aligns well with the requirements of decentralized financial networks. 

Despite its advantages, the proposed framework has certain limitations that warrant further 
investigation: 
1. Computational Overhead: While gradient sparsification and quantization reduce communication  

costs, they may introduce additional computational demands on resource-constrained devices. 
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2. Noise Calibration for DP: The addition of noise to satisfy DP requirements can still impact model 

accuracy in extreme cases. Fine-tuning the noise variance (𝜎2) for different applications requires 
further exploration. 

3. Dynamic Participation: Although the framework demonstrated adaptability under dynamic 
participation scenarios, further optimization is needed to handle high volatility in client 
availability. 
 

5. CONCLUSION 

Privacy-preserving federated learning (PPFL) offers a promising solution for collaborative 
machine learning in decentralized settings, particularly in applications requiring stringent data privacy, 
such as healthcare, IoT, and financial systems. This study proposed a scalable and privacy-enhanced 
federated learning framework that addresses key challenges associated with privacy, communication 
efficiency, and model performance, especially in non-IID environments. 

The framework introduced an adaptive mechanism for optimizing trade-offs between privacy, 
communication, and accuracy based on system constraints and application requirements. By 
integrating gradient sparsification and quantization with differential privacy techniques, the proposed 
approach effectively reduced communication overhead while ensuring robust privacy guarantees. 
Furthermore, the framework's hierarchical aggregation strategy and adaptive client participation 
mechanism enhanced its scalability, making it suitable for large-scale deployments. 

Experimental evaluations demonstrated the framework's superiority over existing methods such 
as FedAvg and FedProx. The results highlighted its ability to maintain high accuracy in non-IID 
settings, achieve a favorable privacy-accuracy balance, and significantly reduce communication costs. 
These findings underscore the framework's potential for practical deployment in real-world 
applications, where data heterogeneity, resource constraints, and dynamic participation are common. 
Explicitly, experiments showed a 6.5% accuracy gain on CIFAR-10 and 5.8% on MNIST in non-IID 
settings over FedAvg, with 87.2% accuracy at ε=1.0 (outperforming DP-FL by 4.3%), and a 40% 
reduction in communication overhead via sparsification and quantization. Analytical insights include 
sublinear communication scaling (R²=0.92 logarithmic fit) and robust adaptability under dynamic 
participation (3.8% higher accuracy than baselines). 

While the proposed framework addresses several critical challenges, there are opportunities for 
further improvement and exploration. Future research directions include: 
1. Enhanced Adaptability: Incorporating reinforcement learning to optimize trade-offs dynamically 

in real-time scenarios. 
2. Energy Efficiency: Developing energy-efficient gradient compression and aggregation techniques 

for resource-constrained devices. 
3. Robust Privacy Mechanisms: Extending differential privacy techniques to defend against 

emerging threats such as membership inference and collaborative adversarial attacks. 
4. Cross-Domain Learning: Adapting the framework for cross-domain federated learning to support 

diverse applications with heterogeneous data distributions. 
5. Long-Term Scalability: Investigating long-term scalability for scenarios with millions of 

participants, focusing on network resilience and fault tolerance. 
By addressing these areas, the proposed framework can continue to evolve, driving the adoption of 
privacy-preserving federated learning systems across critical industries and fostering secure, 
collaborative innovation. 
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