Chemical Characterization and Antibacterial Activities of Bio-oil from Durian Shell Pyrolysis

Mashuni Mashuni, La Ode Kadidae, M Jahiding, Fitri Handayani Hamid, Waris Abdul Kadir, Andi Muhammad Naufal Khaeri

Abstract


Foodborne bacteria cause food spoilage, usually Staphylococcus aureus and Escherichia coli. Thus, synthetic preservatives are employed in food preservation to prevent food spoilage caused by microorganisms. Excessive use of synthetic preservatives can cause disease. Bio-oil has become a natural preservative because of its high phenolic content. However, bio-oil still requires purification because the initial bio-oil (grade 3) still contains carcinogenic compounds that are dangerous for consumption. Therefore, this study aims to determine the components of the bio-oil compound after purification and its effectiveness as an antibacterial. Durian shell (DS) is pyrolyzed in a heating reactor without oxygen at a temperature of 330–600ºC (flow rate 6ºC/minute) with a 2-3 cm material size. Furthermore, bio-oil purification includes stages of filtration using activated zeolite, fractional distillation at 70–200ºC (grade 2), and filtration using activated charcoal (grade 1). Bio-oil purification includes stages of filtration using active zeolite and activated charcoal (grade 2), and fractional distillation at a temperature of 150–200ºC (grade 1). Based on Gas Chromatography-Mass Spectrometry (GC-MS) analysis, grade 2 and grade 1 contain the major compounds 1,4-dimethyl-1h-imidazole and acetic acid. The research showed that bio-oil grades 1 and 2, when used at a 30% concentration, exhibit antibacterial strong effects against Staphylococcus aureus and Escherichia coli. These findings suggest that bio-oil grades 1 and 2 could be valuable natural preservatives.


Keywords


antibacterial; bio-oil; durian shell; preservatives; pyrolysis

References


Teshome E, Forsido SF, Rupasinghe HPV, Olika Keyata E. Potentials of Natural Preservatives to Enhance Food Safety and Shelf Life: A Review. The Scientific World Journal. 2022;2022:1-11. doi:10.1155/2022/9901018

Chibane LB, Degraeve P, Ferhout H, Bouajila J, Oulahal N. Plant antimicrobial polyphenols as potential natural food preservatives. J Sci Food Agric. 2019;99(4):1457-1474. doi:10.1002/jsfa.9357

Bergwerff AA, Debast SB. Modernization of Control of Pathogenic Micro-Organisms in the Food-Chain Requires a Durable Role for Immunoaffinity-Based Detection Methodology—A Review. Foods. 2021;10(4):832. doi:10.3390/foods10040832

Rathee P, Sehrawat R, Rathee P, et al. Polyphenols: Natural Preservatives with Promising Applications in Food, Cosmetics and Pharma Industries; Problems and Toxicity Associated with Synthetic Preservatives; Impact of Misleading Advertisements; Recent Trends in Preservation and Legislation. Materials. 2023;16(13):4793. doi:10.3390/ma16134793

Carocho M, Morales P, Ferreira ICFR. Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci Technol. 2018;71:107-120. doi:10.1016/j.tifs.2017.11.008

Awad AM, Kumar P, Ismail-Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Green Extraction of Bioactive Compounds from Plant Biomass and Their Application in Meat as Natural Antioxidant. Antioxidants. 2021;10(9):1465. doi:10.3390/antiox10091465

Kumar P, Chatli MK, Mehta N, et al. Antioxidant and antimicrobial efficacy of sapota powder in pork patties stored under different packaging conditions. Korean J Food Sci Anim Resour. 2018;38(3):593-605. doi:10.5851/kosfa.2018.38.3.593

Patrignani F, Siroli L, Serrazanetti DI, Gardini F, Lanciotti R. Innovative strategies based on the use of essential oils and their components to improve safety, shelf-life and quality of minimally processed fruits and vegetables. Trends Food Sci Technol. 2015;46(2):311-319. doi:10.1016/j.tifs.2015.03.009

Khan A, Huq T, Khan RA, Riedl B, Lacroix M. Nanocellulose-Based Composites and Bioactive Agents for Food Packaging. Crit Rev Food Sci Nutr. 2014;54(2):163-174. doi:10.1080/10408398.2011.578765

López-García G, Dublan-García O, Arizmendi-Cotero D, Gómez Oliván LM. Antioxidant and Antimicrobial Peptides Derived from Food Proteins. Molecules. 2022;27(4):1343. doi:10.3390/molecules27041343

Palombo EA. Traditional Medicinal Plant Extracts and Natural Products with Activity against Oral Bacteria: Potential Application in the Prevention and Treatment of Oral Diseases. Evidence-Based Complementary and Alternative Medicine. 2011;2011:1-15. doi:10.1093/ecam/nep067

Chemat F, Vian MA, Cravotto G. Green Extraction of Natural Products: Concept and Principles. Int J Mol Sci. 2012;13(7):8615-8627. doi:10.3390/ijms13078615

Martínez-Graciá C, González-Bermúdez CA, Cabellero-Valcárcel AM, Santaella-Pascual M, Frontela-Saseta C. Use of herbs and spices for food preservation: advantages and limitations. Curr Opin Food Sci. 2015;6:38-43. doi:10.1016/j.cofs.2015.11.011

Rout S, Tambe S, Deshmukh RK, et al. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends Food Sci Technol. 2022;129:421-439. doi:10.1016/j.tifs.2022.10.012

Macwan SR, Dabhi BK, Aparnathi KD, Prajapati JB. Essential Oils of Herbs and Spices: Their Antimicrobial Activity and Application in Preservation of Food. Int J Curr Microbiol Appl Sci. 2016;5(5):885-901. doi:10.20546/ijcmas.2016.505.092

Al-Maqtari QA, Rehman A, Mahdi AA, et al. Application of essential oils as preservatives in food systems: challenges and future prospectives – a review. Phytochemistry Reviews. 2022;21(4):1209-1246. doi:10.1007/s11101-021-09776-y

Ortega-Ramirez LA, Rodriguez-Garcia I, Leyva JM, et al. Potential of Medicinal Plants as Antimicrobial and Antioxidant Agents in Food Industry: A Hypothesis. J Food Sci. 2014;79(2):R129-R137. doi:10.1111/1750-3841.12341

Gokoglu N. Novel natural food preservatives and applications in seafood preservation: a review. J Sci Food Agric. 2019;99(5):2068-2077. doi:10.1002/jsfa.9416

Nascimento D do L, Moraes AAB de, Costa KS da, et al. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules. 2020;10(7):988. doi:10.3390/biom10070988

Olvera-Aguirre G, Piñeiro-Vázquez ÁT, Sanginés-García JR, et al. Using plant-based compounds as preservatives for meat products: A review. Heliyon. 2023;9(6):e17071. doi:10.1016/j.heliyon.2023.e17071

Masyita A, Mustika Sari R, Dwi Astuti A, et al. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem X. 2022;13:100217. doi:10.1016/j.fochx.2022.100217

Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr. 2023;10. doi:10.3389/fnut.2023.1118761

Martillanes S, Rocha-Pimienta J, Cabrera-Bañegil M, Martín-Vertedor D, Delgado-Adámez J. Application of Phenolic Compounds for Food Preservation: Food Additive and Active Packaging. In: Phenolic Compounds - Biological Activity. InTech; 2017. doi:10.5772/66885

Carrasco JMD, Redondo LM, Redondo EA, Dominguez JE, Chacana AP, Miyakawa MEF. Use of Plant Extracts as an Effective Manner to Control Clostridium perfringens Induced Necrotic Enteritis in Poultry. Biomed Res Int. 2016;2016:1-15. doi:10.1155/2016/3278359

Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater. 2018;344:179-199. doi:10.1016/j.jhazmat.2017.10.014

Oramahi HA, Diba F, Nurhaida. New Bio Preservatives from Lignocelluloses Biomass Bio-oil for Anti Termites Coptotermes Curvignathus Holmgren. Procedia Environ Sci. 2014;20:778-784. doi:10.1016/j.proenv.2014.03.094

Singh BK, Tiwari S, Dubey NK. Essential oils and their nanoformulations as green preservatives to boost food safety against mycotoxin contamination of food commodities: a review. J Sci Food Agric. 2021;101(12):4879-4890. doi:10.1002/jsfa.11255

Dai L, Zhou N, Li H, et al. Recent advances in improving lignocellulosic biomass-based bio-oil production. J Anal Appl Pyrolysis. 2020;149:104845. doi:10.1016/j.jaap.2020.104845

Zhong S, Zhang B, Liu C, Shujaa aldeen A, Mwenya S, Zhang H. A minireview on catalytic fast co-pyrolysis of lignocellulosic biomass for bio-oil upgrading via enhancing monocyclic aromatics. J Anal Appl Pyrolysis. 2022;164:105544. doi:10.1016/j.jaap.2022.105544

Wang Y, Akbarzadeh A, Chong L, Du J, Tahir N, Awasthi MK. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review. Chemosphere. 2022;297:134181. doi:10.1016/j.chemosphere.2022.134181

Khuenkaeo N, Tippayawong N. Production and characterization of bio-oil and biochar from ablative pyrolysis of lignocellulosic biomass residues. Chem Eng Commun. 2020;207(2):153-160. doi:10.1080/00986445.2019.1574769

Mashuni M, Kadidae L, Lewi M, Yanti N, Jahiding M, Hamid F. The Chemical Compounds Analysis of Bio-oil and Char from Cocoa Pod Husks Waste Pyrolysis by GC-MS/FTIR and its Potential as Biofungicide. In: International Conference on Science & Technology. ; 2019. doi:10.4108/eai.2-5-2019.2284694

Lee SH, H`ng PS, Chow MJ, et al. Effectiveness of Pyroligneous Acids from Vapour Released in Charcoal Industry Against Biodegradable Agent under Laboratory Condition. Journal of Applied Sciences. 2011;11(24):3848-3853. doi:10.3923/jas.2011.3848.3853

Oramahi HA, Yoshimura T. Antifungal and antitermitic activities of wood vinegar from Vitex pubescens Vahl. Journal of Wood Science. 2013;59(4):344-350. doi:10.1007/s10086-013-1340-8

Dias IA, Horta RP, Matos M, et al. Exploring the antioxidant and antimicrobial properties of the water-soluble fraction derived from pyrolytic lignin separation in fast-pyrolysis bio-oil. Biomass Convers Biorefin. Published online July 15, 2023. doi:10.1007/s13399-023-04561-7

Kumar R. Assessment of Antimicrobial Activity of Bio-Oil from Pongamia Glabra, Mesua Ferrea and Parachlorella SPP Deoiled Cake.; 2013. www.ijpbs.net

Mashuni, Jahiding M, Kurniasih I, Zulkaidah. Characterization of preservative and pesticide as potential of bio oil compound from pyrolisis of cocoa shell using gas chromatography Characterization of Preservative and Pesticide as Potential of Bio Oil Compound From Pyrolisis of Cocoa Shell Using Gas. In: AIP Conference Proceedings. Vol 020008. AIP Publishing; 2017:1-8. doi:10.1063/1.4978081

Mattos C, Veloso MCC, Romeiro GA, Folly E. Biocidal applications trends of bio-oils from pyrolysis: Characterization of several conditions and biomass, a review. J Anal Appl Pyrolysis. 2019;139:1-12. doi:10.1016/j.jaap.2018.12.029

Bedmutha R, Booker CJ, Ferrante L, et al. Insecticidal and bactericidal characteristics of the bio-oil from the fast pyrolysis of coffee grounds. J Anal Appl Pyrolysis. 2011;90(2):224-231. doi:10.1016/j.jaap.2010.12.011

Mashuni M, Jahiding M. The Biomass Waste Pyrolysis for Biopesticide Application. In: Bartoli M, Giorcelli M, eds. Recent Perspectives in Pyrolysis Research Pyrolysis. IntechOpen; 2021.

Calixto GQ, Melo DMA, Melo MAF, Braga RM. Analytical pyrolysis (Py–GC/MS) of corn stover, bean pod, sugarcane bagasse, and pineapple crown leaves for biorefining. Brazilian Journal of Chemical Engineering. 2022;39(1):137-146. doi:10.1007/s43153-021-00099-1

Zhong D, Zeng K, Li J, et al. Characteristics and evolution of heavy components in bio-oil from the pyrolysis of cellulose, hemicellulose and lignin. Renewable and Sustainable Energy Reviews. 2022;157:111989. doi:10.1016/j.rser.2021.111989

Zhang T, Cao D, Feng X, et al. Machine learning prediction of bio-oil characteristics quantitatively relating to biomass compositions and pyrolysis conditions. Fuel. 2022;312:122812. doi:10.1016/j.fuel.2021.122812

Wang Q, Jiao L, Wang S, et al. Adjuvant Chemotherapy with Chinese Herbal Medicine Formulas Versus Placebo in Patients with Lung Adenocarcinoma after Radical Surgery: a Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial. Biol Proced Online. 2020;22(1):5. doi:10.1186/s12575-020-00117-5

Zhan Y fei, Hou X tao, Fan L li, et al. Chemical constituents and pharmacological effects of durian shells in ASEAN countries: A review. Chin Herb Med. 2021;13(4):461-471. doi:10.1016/j.chmed.2021.10.001

Mursyidin DH, Makruf MI, Badruzsaufari, Noor A. Molecular diversity of exotic durian (Durio spp.) germplasm: a case study of Kalimantan, Indonesia. Journal of Genetic Engineering and Biotechnology. 2022;20(1):39. doi:10.1186/s43141-022-00321-8

Masrol SR, Ibrahim MHI, Adnan S. Chemi-mechanical Pulping of Durian Rinds. Procedia Manuf. 2015;2:171-180. doi:10.1016/j.promfg.2015.07.030

Kumar G, Dharmaraja J, Arvindnarayan S, et al. A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels. Fuel. 2019;251:352-367. doi:10.1016/j.fuel.2019.04.049

Hoang AT, Ong HC, Fattah IMR, et al. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology. 2021;223:106997. doi:10.1016/j.fuproc.2021.106997

Nanda S, Berruti F. Thermochemical conversion of plastic waste to fuels: a review. Environ Chem Lett. 2021;19(1):123-148. doi:10.1007/s10311-020-01094-7

Pedersen TH, Sharma K, Rosendahl LA. Understanding and predicting the solubility of bio-crude oils. Fuel. 2020;271:117619. doi:10.1016/j.fuel.2020.117619

Mashuni, Jahiding M, Ilmawati WS, et al. Characterization of Liquid Volatile Matter (LVM) of Cashew Nut Shell using Pyrolysis and Gas Chomatroghaphy. J Phys Conf Ser. 2017;846(1). doi:10.1088/1742-6596/846/1/012026

Zhang S, Yang X, Zhang H, et al. Liquefaction of Biomass and Upgrading of Bio-Oil: A Review. Molecules. 2019;24(12):2250. doi:10.3390/molecules24122250

Ly HV, Kwon B, Kim J, et al. Effects of torrefaction on product distribution and quality of bio-oil from food waste pyrolysis in N2 and CO2. Waste Management. 2022;141:16-26. doi:10.1016/j.wasman.2022.01.013

Pinheiro Pires AP, Arauzo J, Fonts I, et al. Challenges and Opportunities for Bio-oil Refining: A Review. Energy & Fuels. 2019;33(6):4683-4720. doi:10.1021/acs.energyfuels.9b00039

Kim JS. Production, separation and applications of phenolic-rich bio-oil – A review. Bioresour Technol. 2015;178:90-98. doi:10.1016/j.biortech.2014.08.121

Saputro H, Liana DN, Firdaus A, et al. Preliminary study of pellets Refuse Derived Fuel (RDF-5) based on Durian waste for feedstock in fast pyrolysis. IOP Conf Ser Mater Sci Eng. 2018;434:012184. doi:10.1088/1757-899X/434/1/012184

Šimko P. Determination of polycyclic aromatic hydrocarbons in smoked meat products and smoke flavouring food additives. Journal of Chromatography B. 2002;770(1-2):3-18. doi:10.1016/S0378-4347(01)00438-8

Fagernäs L, Kuoppala E, Simell P. Polycyclic Aromatic Hydrocarbons in Birch Wood Slow Pyrolysis Products. Energy & Fuels. 2012;26(11):6960-6970. doi:10.1021/ef3010515

Hamza H, Elfalleh W, Nagaz K. Date Palm Seed Oil (Phoenix dactylifera L.) Green Extraction: Physicochemical Properties, Antioxidant Activities, and Phenolic and Fatty Acid Profiles. J Food Qual. 2021;2021:1-9. doi:10.1155/2021/2394220

Li F, Srivatsa SC, Bhattacharya S. A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds. Renewable and Sustainable Energy Reviews. 2019;108:481-497. doi:10.1016/j.rser.2019.03.026

Bertero M, de la Puente G, Sedran U. Fuels from bio-oils: Bio-oil production from different residual sources, characterization and thermal conditioning. Fuel. 2012;95:263-271. doi:10.1016/j.fuel.2011.08.041

Arcari T, Feger ML, Guerreiro DN, Wu J, O’Byrne CP. Comparative Review of the Responses of Listeria monocytogenes and Escherichia coli to Low pH Stress. Genes (Basel). 2020;11(11):1330. doi:10.3390/genes11111330

Mantilla SV, Manrique AM, Gauthier-Maradei P. Methodology for Extraction of Phenolic Compounds of Bio-oil from Agricultural Biomass Wastes. Waste Biomass Valorization. 2015;6(3):371-383. doi:10.1007/s12649-015-9361-8

Agustina W, Elvia R. Aktivitas Asap Cair Cangkang Buah Hevea braziliensis sebagai Anti Bakteri Staphylacoccus aureus. ALOTROP Jurnal Pendidikan dan Ilmu Kimia. 2017;1(1):6-9.

Suresh G, Pakdel H, Rouissi T, Kaur Brar S, Diarra M, Roy C. Evaluation of pyroligneous acid as a therapeutic agent against Salmonella in a simulated gastrointestinal tract of poultry. Brazilian Journal of Microbiology. 2020;51:1309-1316. doi:10.1007/s42770-020-00294-1/Published

Suresh G, Pakdel H, Rouissi T, Brar SK, Fliss I, Roy C. In vitro evaluation of antimicrobial efficacy of pyroligneous acid from softwood mixture. Biotechnology Research and Innovation. 2019;3(1):47-53. doi:10.1016/j.biori.2019.02.004

Kensa V, Neelamegum R. GC-MS Determination of bioactive constituents of Hydrilla verticillata (Lf) Royle. Collected from unpolluted and polluted water sources. Asian Journal of Biology. 16AD;1:1-6.

Sabel A, Bredefeld S, Schlander M, Claus H. Wine Phenolic Compounds: Antimicrobial Properties against Yeasts, Lactic Acid and Acetic Acid Bacteria. Beverages. 2017;3(3):29. doi:10.3390/beverages3030029

Guimarães A, Venâncio A. The Potential of Fatty Acids and Their Derivatives as Antifungal Agents: A Review. Toxins (Basel). 2022;14(3):188. doi:10.3390/toxins14030188

Mashuni M, Ahmad LO, Sandalayuk E, Hamid FH, Jahiding M, Naufal MAK. Synthesis of Antibacterial and Biodegradable Bioplastic Based on Shrimp Skin Chitosan and Durian Skin Cellulose with the Microwave Assistance. Jurnal Kimia Valensi. 2022;8(1):113-123. doi:10.15408/jkv.v8i1.23233

Yanti NA, Ambardini S, Marlina WOL, Kartika DC. Aktivitas Antibakteri Kombucha Daun Sirsak (Annona muricata L.) Dengan Konsentrasi Gula Berbeda. Berkala Sainsstek. 2020;VIII(2):35-40.

Oktarina D, Elvia R. Uji Efektivitas Asap Cair Cangkang Buah Hevea braziliensis terhadap Aktivitas Bakteri Escherichia coli. ALOTROP Jurnal Pendidikan dan Ilmu Kimia. 2017;1(1):1-5.

Saloko S, Darmadji P, Setiaji B, Pranoto Y. Antioxidative and antimicrobial activities of liquid smoke nanocapsules using chitosan and maltodextrin and its application on tuna fish preservation. Food Biosci. 2014;7:71-79. doi:10.1016/j.fbio.2014.05.008

Rhayour K, Bouchikhi T, Tantaoui-Elaraki A, Sendide K, Remmal A. The Mechanism of Bactericidal Action of Oregano and Clove Essential Oils and of Their Phenolic Major Components on Escherichia coli and Bacillus subtilis. Journal of Essential Oil Research. 2003;15(5):356-362. doi:10.1080/10412905.2003.9698611

Soldera S, Sebastianutto N, Bortolomeazzi R. Composition of Phenolic Compounds and Antioxidant Activity of Commercial Aqueous Smoke Flavorings. J Agric Food Chem. 2008;56(8):2727-2734. doi:10.1021/jf072117d

Di Pasqua R, Betts G, Hoskins N, Edwards M, Ercolini D, Mauriello G. Membrane Toxicity of Antimicrobial Compounds from Essential Oils. J Agric Food Chem. 2007;55(12):4863-4870. doi:10.1021/jf0636465

Yuliana G, Afrianto E, Pratama IR. Aplikasi Kombinasi Bakteri Asam Laktat, Natrium Klorida Dan Natrium Asetat Terhadap Masa Simpan Ikan Patin (Pangasius hypophtalmus) Pada Suhu Rendah. Jurnal Perikanan Kelautan. 2015;VI(2):85-90.

Abrina Anggraini SP, Yuniningsih S. Optimalisasi Penggunaan Asap Cair dari Tempurung Kelapa sebagai Pengawet Alami pada Ikan Segar. Jurnal Reka Buana. 2017;2(1):11-18.

Husni A, Kusuma Brata A, Ari Budhiyanti S. Peningkatan daya simpan ikan kembung dengan ekstrak etanolik padina sp. Selama penyimpanan suhu kamar. JPHPI. 2015;18(1):1-10. doi:10.17844/jphpi.2015.18.1.01

Susanto E, Agustini TW, Swastawati F, et al. Pemanfaatan Bahan Alam untuk Memperpanjang Umur Simpan Ikan Kembung (Rastrelliger neglectus). Jurnal Perikanan (Journal of Fisheries Sciences). 2011;XIII(2):60-69.

Ariestya DI, Swastawati F, Susanto E. Antimicrobial Activity of Microencapsulation Liquid Smoke on Tilapia [Oreochromis Niloticus (Linnaeus, 1758)] Meat for Preservatives in Cold Storage (± 5 C°). Aquat Procedia. 2016;7:19-27. doi:10.1016/j.aqpro.2016.07.003


Full Text: PDF

DOI: 10.15408/jkv.v10i1.37674

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mashuni Mashuni

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.