A Snapshot of Antibiotic Resistances in Air Particulate of a Provincial Capital City, Indonesia

Sulfikar Sulfikar, Gotot Junarto, Muhammad Ardhias Syam, Andi Zulfikar Efendy, Mohamad Sahrir, Hilda Ningsih

Abstract


Bacteria may become resistant to antibiotics due to gene mutation or adopting resistance genes from other bacteria via horizontal gene transfer. The existence of toxic substances to bacteria, such as antibiotics, biocides, and heavy metals, may influence the pathway into the genome. This study aimed to detect the presence of antibiotic-resistance bacteria in air particulates in Makassar - a provincial capital located in Indonesia with a low to moderate air quality index (AQI). We determined the correlations between antibiotic resistance (resistance rate, RR) and the heavy-metal concentrations in the air particulates. Air particulate samples were taken from seven locations in the summer (Dry Season: July - August 2019). We analyzed the concentration of As, Cu, and Zn of the air particulates and determined RR from presumptive Escherichia coli (E. coli) isolated from the air particulates. We estimated the RR towards five antibiotics with different mechanisms of action: amoxicillin-clavulanate, chloramphenicol, amikacin, norfloxacin, and trimethoprim. The concentrations of the heavy metals were relatively low, ranging from (µg/Nm3) 0.001 – 0.009 for As, 0.001 – 0.003 for Cu, and 0.007 to 0.783 for Zn. We observed different antibiotic resistance at various locations, ranging from 25% to 100% RR. While there were indications of possible antibiotic resistance patterns in the different areas sampled, the power of this perspective snapshot was insufficient to make statistically valid generalizations.

Keywords


Air particulate; antibiotic-resistant bacteria; heavy metal; percent resistance

References


Asadi-Ghalhari, M., Aali, R., Aghanejad, M., Fard, R. F., Shahryari, A., Mirhossaini, H., … Ghanbari, R. (2020). Effects of Different Wastewater Treatment Processes on Occurrence and Prevalence of Antibiotic Resistant Bacteria and Their Resistance Genes. 8(2), 7.

Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. G. J. (2018). Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews, 42(1). https://doi.org/10.1093/femsre/fux053

CLSI. (2012). M02-A11: Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Eleventh Edition. 76.

Danko, D., Bezdan, D., Afshin, E. E., Ahsanuddin, S., Bhattacharya, C., Butler, D. J., … Zubenko, S. (2021). A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell, 0(0). https://doi.org/10.1016/j.cell.2021.05.002

Davies, J., & Davies, D. (2010). Origins and Evolution of Antibiotic Resistance. Microbiology and Molecular Biology Reviews : MMBR, 74(3), 417–433. https://doi.org/10.1128/MMBR.00016-10

Davison, J. (1999). Genetic exchange between bacteria in the environment. Plasmid, 42(2), 73–91. https://doi.org/10.1006/plas.1999.1421

Dinter, P. S., & Müller, W. (1984). [Tenacity of bacteria in the airborne state. III. Model studies on the epidemiology of Pasteurella multocida influenced by a tropical climate]. Zentralblatt Fur Bakteriologie, Mikrobiologie Und Hygiene. 1. Abt. Originale B, Hygiene, 179(2), 139–150.

Fernández, L., & Hancock, R. E. W. (2012). Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance. Clinical Microbiology Reviews, 25(4), 661–681. https://doi.org/10.1128/CMR.00043-12

Fluke, J., González-Pinzón, R., & Thomson, B. (2019). Riverbed Sediments Control the Spatiotemporal Variability of E. coli in a Highly Managed, Arid River. Frontiers in Water, 1, 4. https://doi.org/10.3389/frwa.2019.00004

Gandolfi, I., Bertolini, V., Ambrosini, R., Bestetti, G., & Franzetti, A. (2013). Unravelling the bacterial diversity in the atmosphere. Applied Microbiology and Biotechnology, 97(11), 4727–4736. https://doi.org/10.1007/s00253-013-4901-2

Gray, D. A., Dugar, G., Gamba, P., Strahl, H., Jonker, M. J., & Hamoen, L. W. (2019). Extreme slow growth as alternative strategy to survive deep starvation in bacteria. Nature Communications, 10(1), 890. https://doi.org/10.1038/s41467-019-08719-8

Guo, Q., Ahn, S.-J., Kaspar, J., Zhou, X., & Burne, R. A. (2014). Growth Phase and pH Influence Peptide Signaling for Competence Development in Streptococcus mutans. Journal of Bacteriology, 196(2), 227–236. https://doi.org/10.1128/JB.00995-13

Hobman, J. L., & Crossman, L. C. (2015). Bacterial antimicrobial metal ion resistance. Journal of Medical Microbiology, 64(5), 471–497. https://doi.org/10.1099/jmm.0.023036-0

Hu, J., Zhao, F., Zhang, X.-X., Li, K., Li, C., Ye, L., & Li, M. (2018). Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event. Science of The Total Environment, 615, 1332–1340. https://doi.org/10.1016/j.scitotenv.2017.09.222

Imlay, J. A. (2008). Cellular defenses against superoxide and hydrogen peroxide. Annual Review of Biochemistry, 77, 755–776. https://doi.org/10.1146/annurev.biochem.77.061606.161055

Jiang, H., Zhou, R., Zhang, M., Cheng, Z., Li, J., Zhang, G., … Yang, Y. (2018). Exploring the differences of antibiotic resistance genes profiles between river surface water and sediments using metagenomic approach. Ecotoxicology and Environmental Safety, 161, 64–69. https://doi.org/10.1016/j.ecoenv.2018.05.044

Klein, E. Y., Milkowska-Shibata, M., Tseng, K. K., Sharland, M., Gandra, S., Pulcini, C., & Laxminarayan, R. (2021). Assessment of WHO antibiotic consumption and access targets in 76 countries, 2000–15: An analysis of pharmaceutical sales data. The Lancet Infectious Diseases, 21(1), 107–115. https://doi.org/10.1016/S1473-3099(20)30332-7

Knopp, M., & Andersson, D. I. (2015). Amelioration of the Fitness Costs of Antibiotic Resistance Due To Reduced Outer Membrane Permeability by Upregulation of Alternative Porins. Molecular Biology and Evolution, 32(12), 3252–3263. https://doi.org/10.1093/molbev/msv195

Kodoth, V., & Jones, M. (2015). The Effects of Ultraviolet Light on Escherichia coli. Journal of Emerging Investigators, 1-4.

Kumar, M., Sulfikar, Chaminda, T., Patel, A. K., Sewwandi, H., Mazumder, P., … Honda, R. (2020). Prevalence of antibiotic resistance in the tropical rivers of Sri Lanka and India. Environmental Research, 188, 109765. https://doi.org/10.1016/j.envres.2020.109765

Li, J., Cao, J., Zhu, Y., Chen, Q., Shen, F., Wu, Y., … Yao, M. (2018). Global Survey of Antibiotic Resistance Genes in Air. Environmental Science & Technology, 52(19), 10975–10984. https://doi.org/10.1021/acs.est.8b02204

Lien, L. T. Q., Hoa, N. Q., Chuc, N. T. K., Thoa, N. T. M., Phuc, H. D., Diwan, V., … Lundborg, C. S. (2016). Antibiotics in Wastewater of a Rural and an Urban Hospital before and after Wastewater Treatment, and the Relationship with Antibiotic Use—A One Year Study from Vietnam. International Journal of Environmental Research and Public Health, 13(6), 588. https://doi.org/10.3390/ijerph13060588

MacFadden, D. R., McGough, S. F., Fisman, D., Santillana, M., & Brownstein, J. S. (2018). Antibiotic resistance increases with local temperature. Nature Climate Change, 8(6), 510–514. https://doi.org/10.1038/s41558-018-0161-6

McGough, S. F., MacFadden, D. R., Hattab, M. W., Mølbak, K., & Santillana, M. (2020). Rates of increase of antibiotic resistance and ambient temperature in Europe: A cross-national analysis of 28 countries between 2000 and 2016. Eurosurveillance, 25(45). https://doi.org/10.2807/1560-7917.ES.2020.25.45.1900414

Moore, M. E., Lam, A., Bhatnagar, S., & Solnick, J. V. (2014). Environmental determinants of transformation efficiency in Helicobacter pylori. Journal of Bacteriology, 196(2), 337–344. https://doi.org/10.1128/JB.00633-13

Nguyen, C. C., Hugie, C. N., Kile, M. L., & Navab-Daneshmand, T. (2019). Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review. Frontiers of Environmental Science & Engineering, 13(3), 46. https://doi.org/10.1007/s11783-019-1129-0

Nyström, T. (1998). To be or not to be: The ultimate decision of the growth-arrested bacterial cell. FEMS Microbiology Reviews, 21(4), 283–290. https://doi.org/10.1111/j.1574-6976.1998.tb00354.x

Ouyang, W., Gao, B., Cheng, H., Zhang, L., Wang, Y., Lin, C., & Chen, J. (2020). Airborne bacterial communities and antibiotic resistance gene dynamics in PM2.5 during rainfall. Environment International, 134, 105318. https://doi.org/10.1016/j.envint.2019.105318

Pal, C., Asiani, K., Arya, S., Rensing, C., Stekel, D. J., Larsson, D. G. J., & Hobman, J. L. (2017). Metal Resistance and Its Association With Antibiotic Resistance. In Advances in Microbial Physiology (Vol. 70, pp. 261–313). Elsevier. https://doi.org/10.1016/bs.ampbs.2017.02.001

Pereira, R. V., Bicalho, M. L., Machado, V. S., Lima, S., Teixeira, A. G., Warnick, L. D., & Bicalho, R. C. (2014). Evaluation of the effects of ultraviolet light on bacterial contaminants inoculated into whole milk and colostrum, and on colostrum immunoglobulin G. Journal of Dairy Science, 97(5), 2866–2875. https://doi.org/10.3168/jds.2013-7601

Poole, K. (2012). Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends in Microbiology, 20(5), 227–234. https://doi.org/10.1016/j.tim.2012.02.004

Proia, L., von Schiller, D., Sànchez-Melsió, A., Sabater, S., Borrego, C. M., Rodríguez-Mozaz, S., & Balcázar, J. L. (2016). Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers. Environmental Pollution (Barking, Essex: 1987), 210, 121–128. https://doi.org/10.1016/j.envpol.2015.11.035

Rittershaus, E. S. C., Baek, S., & Sassetti, C. M. (2013). The Normalcy of Dormancy. Cell Host & Microbe, 13(6), 643–651. https://doi.org/10.1016/j.chom.2013.05.012

Roux, D., Danilchanka, O., Guillard, T., Cattoir, V., Aschard, H., Fu, Y., … Skurnik, D. (2015). Fitness cost of antibiotic susceptibility during bacterial infection. Science Translational Medicine, 7(297), 297ra114. https://doi.org/10.1126/scitranslmed.aab1621

Sianturi, P., Hasibuan, B. S., Lubis, B. M., Azlin, E., & Tjipta, G. D. (2012). Gambaran Pola Resistensi Bakteri di Unit Perawatan Neonatus | Sianturi | Sari Pediatri. Sari Pediatri, 13(6), 431–436.

Solomon, F. B., Wadilo, F. W., Arota, A. A., & Abraham, Y. L. (2017). Antibiotic resistant airborne bacteria and their multidrug resistance pattern at University teaching referral Hospital in South Ethiopia. Annals of Clinical Microbiology and Antimicrobials, 16(1), 29. https://doi.org/10.1186/s12941-017-0204-2

Solomon, S. L., & Oliver, K. B. (2014). Antibiotic Resistance Threats in the United States: Stepping Back from the Brink. American Family Physician, 89(12), 938–941.

Sulfikar, Honda, R., Noguchi, M., Yamamoto-Ikemoto, R., & Watanabe, T. (2018). Effect of Sedimentation and Aeration on Antibiotic Resistance Induction in the Activated Sludge Process. Journal of Water and Environment Technology, 16(2), 94–105. https://doi.org/10.2965/jwet.17-046

Tang, J. W. (2009). The effect of environmental parameters on the survival of airborne infectious agents. Journal of the Royal Society, Interface, 6 Suppl 6, S737-746. https://doi.org/10.1098/rsif.2009.0227.focus

van Vliet, S. (2015). Bacterial Dormancy: How to Decide When to Wake Up. Current Biology, 25(17), R753–R755. https://doi.org/10.1016/j.cub.2015.07.039

Ventola, C. L. (2015). The Antibiotic Resistance Crisis. Pharmacy and Therapeutics, 40(4), 277–283.

Wengenroth, L., Berglund, F., Blaak, H., Chifiriuc, M. C., Flach, C.-F., Pircalabioru, G. G., … Schmitt, H. (2021). Antibiotic Resistance in Wastewater Treatment Plants and Transmission Risks for Employees and Residents: The Concept of the AWARE Study. Antibiotics, 10(5), 478. https://doi.org/10.3390/antibiotics10050478

WHO. (2019). WHO releases the 2019 AWaRe Classification Antibiotics. Retrieved April 5, 2022, from WHO releases the 2019 AWaRe Classification Antibiotics website: https://www.who.int/news/item/01-10-2019-who-releases-the-2019-aware-classification-antibiotics

WHO Fact Sheet. (2021). Antimicrobial resistance. Retrieved December 12, 2021, from https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance

Xie, J., Jin, L., Luo, X., Zhao, Z., & Li, X. (2018). Seasonal Disparities in Airborne Bacteria and Associated Antibiotic Resistance Genes in PM 2.5 between Urban and Rural Sites. Environmental Science & Technology Letters, 5(2), 74–79. https://doi.org/10.1021/acs.estlett.7b00561

Xu, Y.-B., Hou, M.-Y., Li, Y.-F., Huang, L., Ruan, J.-J., Zheng, L., … Du, Q.-P. (2017). Distribution of tetracycline resistance genes and AmpC β-lactamase genes in representative non-urban sewage plants and correlations with treatment processes and heavy metals. Chemosphere, 170, 274–281. https://doi.org/10.1016/j.chemosphere.2016.12.027

Yang, S.-F., Lin, C.-F., Wu, C.-J., Ng, K.-K., Yu-Chen Lin, A., & Andy Hong, P.-K. (2012). Fate of sulfonamide antibiotics in contact with activated sludge – Sorption and biodegradation. Water Research, 46(4), 1301–1308. https://doi.org/10.1016/j.watres.2011.12.035

Ye, J., Rensing, C., Su, J., & Zhu, Y.-G. (2017a). From chemical mixtures to antibiotic resistance. Journal of Environmental Sciences, 62, 138–144. https://doi.org/10.1016/j.jes.2017.09.003

Ye, J., Rensing, C., Su, J., & Zhu, Y.-G. (2017b). From chemical mixtures to antibiotic resistance. Journal of Environmental Sciences, 62, 138–144. https://doi.org/10.1016/j.jes.2017.09.003

Yunus, S., Rashid, M., Mat, R., Baharun, S., & Man, H. C. (2019). Characteristic of the PM10 in the urban environment of Makassar, Indonesia. Journal of Urban and Environmental Engineering, 13(1), 198–207. https://doi.org/10.4090/juee.2009.v13n1.198207

Zhang, T., Li, X., Wang, M., Chen, H., Yang, Y., Chen, Q., & Yao, M. (2019). Time-resolved spread of antibiotic resistance genes in highly polluted air. Environment International, 127, 333–339. https://doi.org/10.1016/j.envint.2019.03.006

Zhang, Y., Gu, A. Z., Cen, T., Li, X., He, M., Li, D., & Chen, J. (2018). Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. Environmental Pollution, 237, 74–82. https://doi.org/10.1016/j.envpol.2018.01.032


Full Text: PDF

DOI: 10.15408/jkv.v8i1.24559

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Sulfikar Sulfikar

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.