

Available online at Website: http://journal.uinjkt.ac.id/index.php/valensi

Dammarane-Type Triterpenoids from The Stembark of Aglaia argentea (Meliaceae)

Ace Tatang Hidayat^{1,2}, Kindi Farabi¹, Ida Nur Farida², Kansy Haikal², Nurlelasari¹, Desi Harneti¹, Rani Maharani^{1,2}, Unang Supratman^{1,2}, Yoshihito Shiono³

¹Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia ²Central Laboratory of Universitas Padjadjaran, Jatinangor 45363, Indonesia ³Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan

E-mail: unang.supratman@unpad.ac.id

Received: January 2018; Revised: February 2018; Accepted: February 2018; Available Online: May 2018

Abstract

Two dammarane-type triterpenoids, 20S,24S-epoxy- 3α ,25-dihydroxydammarane (1) and 3α -acetyl-20S,24S-epoxy- 3α ,25-dihydroxydammarane (2), have been isolated from the stembark of *Aglaia argentea*. The chemical structure of compounds (1 and 2) were identified by spectroscopic evidences including UV, IR, 1D-NMR, 2D-NMR and MS as well as by comparing with previously reported spectral data. Those compounds were isolated from this plant for first time. Compounds (1 and 2) showed cytotoxic activity against P-388 murine leukemia cells with IC₅₀ values of 23.96 and 8.14 μ M, respectively.

Keywords: Aglaia argentea, Aglaia, dammarane-type triterpenoids, Meliaceae, P-388 Murine leukemia cells.

DOI: http://dx.doi.org/10.15408/jkv.v4i1.7065

1. INTRODUCTION

Dammarane-type triterpenoids widely distributed in various medicinal plants and have a great amount of interest in the field of new drug research and development (Zhao et al., 2007). Dammarane-type triterpenoids belong to tetracyclic ring triterpenoids and their structural characteristic is with H-5 α , СН₃-8β, Н-9а, СН₃-10β, Н-13β, СН₃-14а, C-17 β side chain, and 20*R* or *S* configuration and usually, C-3, C-6, C-7, C-12, C-20, C-23, C-24, or C-25 are replaced by hydroxyl group; C-3, C-6, or C-20 are substituted by saccharide groups and olefinic bond are formatted between C-5 and C-6, C-20 and C-21, C-20 and C-22, C-22 and CC-23, C-24 and C-25 or C-25 and C-26 (Liu et al., 2011). Moreover, cyclization generally displays at C17-side chain. Specifically, a five-membered ring with epoxy bond is usually formed between C-20 and C-24, a five-membered lactone ring usually appears between C-21 and C-23, and a six-membered ring with epoxy bond displays between C-20 and C-25 for dammarane-type triterpenoids (Phan et al., 2011). They are usually classified into protopanaxdiol and protopanaxtriol (with 6-OH) groups based on their aglycone moieties. Furthermore, in pharmacological research, dammarane-type triterpenoids, as well as their derivatives, showed various bioactivities such as antitumor, antiinflammatory, immunostimulatory, neuronal cell proliferatory, antiaging, antibacterial, antidiabetes, and antiosteoporosis abilities (Jin et al., 2011).

The genus *Aglaia* is the largest genus of the family of Meliaceae comprises more than 100 species distributed mainly in India, Indonesia, Malaysia, and parts of the Western Pacific region (Leong *et al.*, 2016). Some species of *Aglaia* have been phytochemically investigated previously with major constituents

of dammarane-type triterpenoids (Zhang et al., 2010; Harneti et al., 2012) and cycloartanetype triterpenoids (Awang et al., 2012; Leong et al., 2016) and glabretal-type triterpenoids (Su et al., 2006). In our continous search for novel secondary metabolites from Indonesian Aglaia plants, we isolated and described triterpenoids, aglinone and aglinin E, from the bark of A. smithii (Harneti et al., 2012), and protolimonoid from the stembark of A. argentea (Farabi et al., 2017). In the further screening for novel triterpenoid compounds from Indonesia Aglaia plants, we found that the *n*-hexane of *A*. argentea exhibited the presence of triterpenoids. We report herein the isolation, structural elucidation of dammaranetype triterpenoid compounds (1-2).

2. MATERIAL AND METHODS

General Experimental Prosedure

Melting points were measured on an electrothermal melting point apparatus and are uncorrected. The IR spectra were recorded on a Perkin-Elmer spectrum-100 FT-IR in KBr. Mass spectra were obtained with a Synapt G2 mass spectrometer instrument. NMR data recorded on a JEOL ECZ-600 were spectrometer at 600 MHz for ¹H and 150 MHz for ¹³C and JEOL JNM A-500 spectrometer at 500 MHz for 1 H and 150 MHz for 13 C, chemical shifts are given on a δ (ppm) scale and tetramethylsilane (TMS) as an internal Column chromatography standard. was conducted on silica gel 60 (Kanto Chemical Co., Inc., Japan). TLC plates were precoated with silica gel GF_{254} (Merck, 0.25 mm) and detection was achieved by spraying with 80% H_2SO_4 in water, followed by heating.

Plant Material

The stembark of *A. argentea* were collected in Bogor Botanical Garden, Bogor, West Java Province, Indonesia in June 2015. The plant was identified by the staff of the Bogoriense Herbarium, Bogor, Indonesia and a voucher specimen (No. Bo-1288718) was deposited at the Herbarium.

Extraction and Isolation

The dried and powdered of *A*. *argentea* (2.5 kg) was extracted with methanol (14 L) at room temperature for 5 days. After removing the solvent, the methanol extract (133.5 g) was recovered. The extract was then suspended to water (500 mL) and successively extracted with *n*-hexane (2×1 L), ethyl acetate $(2 \times 1 L)$ and *n*-butanol $(2 \times 1 L)$ to afford *n*hexane (27 g), ethyl acetate (16 g) and n-BuOH (36 g) extracts, respectively. The nhexane soluble fraction (26.3 g) was separated by vacum liquid chromatography on silica gel 60 using a gradient *n*-hexane and EtOAc to give nine fractions (A–I). Fraction B (2.50 g) was chromatographed on a column of silica gel, eluted with a gradient of *n*-hexane–EtOAc (10:0-1:1), to give six subfractions (C01-C06). Subfraction C03 (250 mg) was chromatographed on a column of silica gel, eluted with CH_2Cl_2 :CHCl₃ (9.5:0.50), to give five subfractions (C03A-C03D). Subfraction C03C was separated on preparative TLC on silica gel GF₂₅₄, eluted with *n*-hexane:EtOAc (8.5:1.5), to give 1 (15.2 mg). Fraction C and D were combined (1.80 g) and was chromatographed on a column of silica gel, eluted with a gradient of n-hexane-EtOAc (10:1-1:10), to give seven subfractions (D01-D07). Subfraction D05 (340 mg) was chromatographed on a column of silica gel, eluted with a gradient of n-hexane-EtOAc (10:1-1:10) to afford four subfractions (D05A-D05D). Subfraction D05C was chromatographed on a column of silica gel, eluted with a gradient of CHCl3-EtOAc (10:1-1:10) to give 2 (10.5 mg).

3. RESULTS AND DISCUSSION

The methanolic extract from the dried stembark of A. argentea was concentrated and extracted successively with *n*-hexane, ethyl acetate, and *n*-butanol. The *n*-hexane exhibited the presence of triterpenoid compounds. By using triterpenoid test to guide separations, the fraction *n*-hexane was separated by combination of column chromatography on silica gel and preparative TLC on silica gel GF_{254} to afford two dammarane-type triterpenoids (1-2).

20*S*,24*S*-epoxy-3α,25-dihydroxydammarane (1)

White crystal, melting points 166-167 °C; IR (KBr) v_{max} 2866, 3457, 1457, 1380, 1055 cm⁻¹;¹H-NMR (CDCl₃, 600 MHz), ¹³C-NMR (CDCl₃, 150 MHz), See Table 1; ESI-MS *m*/*z* 461.36 [M+H]⁺, (calcd. for C₃₀H₅₂O₃ *m*/*z* 460.39).

3α-acetyl-20*S*,24*S*dihydroxydammarane (2) epoxy-3α,25-

Solid amorphous powder; IR (KBr) v_{max} 3200, 2949, 1705, 1457, 1380, 1080 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz); ¹³C-NMR (CDCl₃, 125 MHz), see Table 1; HR-TOFMS m/z 501.3770 [M-H]⁻, (calcd. for C₃₂H₅₄O₄ m/z502,4022).

Compound (1) was isolated as a white needle crystal, melting points, 166-167 °C. The molecular formula of (1) was established to be $C_{30}H_{52}O_3$ based on of ESI-MS spectra (m/z461.36 [M+H]⁺, calcd. for $C_{30}H_{52}O_3$ m/z460.39) along with NMR data (Tabel 1), thus requiring five degrees of unsaturation. The UV spectrum showed no conjugated double based on the absorption maximum above 200 nm. IR spectrum of (1) showed the presence of a hydroxyl group (3457 cm⁻¹), an aliphatic bands (2866 cm⁻¹), a *gem*-dimethyl (1457 and 1380 cm⁻¹) and an ether group (1055 cm⁻¹).

¹H-NMR spectrum showed the presence of eight tertiary methyl signals at $\delta_{\rm H}$ 0.82 (3H, s, CH₃-28), 0.84 (3H, s, CH₃-18), 0.87 (3H, s, CH₃-19), 0.92 (3H, s, CH₃-29), 0.95 (3H, s, CH₃-30), 1.09 (3H, s, CH₃-26), 1.13 (3H, s, CH₃-21) and 1.17 (3H, s, CH₃-27), which characteristic for dammarane-type triterpenoid (Harneti *et al.*, 2014). An oxygenated sp³ methine at $\delta_{\rm H}$ 3.38 (1H, *t*, *J*=3.0 Hz) and an oxygenated sp³ methine in part of tetrahydrofuran ring at $\delta_{\rm H}$ 3.62 (1H, *dd*, *J*=4.8, 10.2 Hz) were also observed in the ¹H-NMR spectra, supporting the presence of dammarane-type triterpenoid structure in compound (1) (Roux *et al.*, 1998).

 13 C-NMR spectrum of (1) showed thirty carbon resonances which were classified by their chemical shifts and the DEPT spectrum as eight methyls, ten methylenes, six and six quarternary carbons, methines indicating the presence of dammarane-type triterpenoid (Harneti et al., 2014). The presence of eight methyl resonances at $\delta_{C}15.6$ (CH₃-30), 16.2 (CH₃-18), 16.6 (CH₃-19), 22.2 (CH₃-28), 24.1 (CH₃-26), 27.3 (CH₃-21), 27.9 (CH₃-27), and 28.4 (CH₃-29), as well as two oxygenated quartenary carbon at $\delta_{\rm C}$ 86.7 and 70.3, supporting the presence of dammaranetriterpenoid with addition type of tetrahydrofuran ring (Roux et al., 1998).

In order to clarify the position of functional groups in compound (1), ${}^{1}H{}^{-1}H$ COSY and HMBC experiments were carried out and the results was shown in Figure 1. The ¹H-¹H COSY spectrum of **1** displayed the correlations in C₁-C₂-C₃, C₅-C₆-C₇, C₉-C₁₁-C₁₂- C_{14} - C_{15} - C_{16} - C_{17} , and $C_{22}-C_{23}-C_{24}$, C_{13} , supporting the presence of dammaran-type triterpenoid structure in (1). In the HMBC spectrum, the correlations arising from the tertiary methyl protons to their neighboring carbons enabled the assignment of the eight singlet methyls at C-4 (2×), C-8, C-10, C-14, C-20, C-26, and C-27, respectively. A methylene protons at δ_H 1.55 and methyl protons at δ_H 0.82 (CH₃-29) were correlated to oxygenated carbon at $\delta_{\rm C}$ 76.4 (C-3), indicated that a secondary hydroxyl group was attached at C-3. Methyl protons at $\delta_{\rm H}$ 1.17 and 1.09, as well as an oxygenated methine at δ_H 3.62 were correlated to oxygenated carbon at $\delta_{\rm C}$ 70.3 (C-25), indicated that a tertiary alcohol and an isopropyl group were attached at C-25 and C-24, respectively. A methine proton at $\delta_{\rm H}$ 1.44 was correlated to C-20 ($\delta_{\rm C}$ 86.7), whereas the methyl proton at δ_H 1.13 was correlated to C-20 (δ_{C} 86.7), C-17 (δ_{C} 49.8), and C-22 (δ_{C} 35.3), indicated that a tetrahydrofuran ring was attached at C-17. The presence of a tetrahydrofuran ring at C-17 was supported also by correlation between a methylene proton at $\delta_{\rm H}$ 1.85 and C-24 ($\delta_{\rm C}$ 86.3).

Figure 1. Selected ¹H-¹H COSY and HMBC correlations for Compounds (1) and (2)

Relative stereochemistry of compound (1) was determined on the basis of coupling constant $({}^{3}J)$ and chemical shift in the ${}^{1}H$ and ¹³C-NMR spectra. A methine proton at C-3 has a ${}^{3}J$ 3.0 Hz, indicating that H-2 and H-3 has axial-equatorial orientation, consequently 3-OH has α -orientation (Zhang *et al.*, 2010; Farabi et al., 2017). A detail analysis of NMR spectra with side chain of 20,34-epoxy-25hydroxy, indicated that δ_C values can be used for determining of 24R and 24S isomer, where $\delta_{\rm C}$ 83.2 for *R* isomer and 86.5 for *S* isomer. In addition, the chemical shift and coupling constant of H-2 can be used also for determining 24R and 24S isomer with chemical shift $\delta_{\rm H}$ 3.7 (1H, t, J=7.0 Hz) and $\delta_{\rm H}$ 3.6 (1H, dd, J=5.5, 10.0 Hz), respectively (Roux et al., 1998; Harneti et al., 2012; Harneti et al., 2014). Compound (1) showed the chemical shift for C-23 and H-24 [δ_C 86.3 and δ_H 3.62 (1H, dd, J=4.8, 10.2 Hz), as well as $\delta_{\rm C}$ 86.7 for C-20, consequently configuration for C-20 and C-24 are S orientation.

A comparison of the NMR data of (1) with those of 20*S*,24*R*-epoxy-25hydroxydammarane isolated from *A. foveolata* (Roux *et al.*, 1998) revealed that the structures of the two compounds are closely related, the main differences is the chemical shift of C-24 (δ_C 83.3), whereas compound (1) was δ_C 86.3, consequently compound (1) was identified as 20*S*,24*S*-epoxy-25-hydroxydammarane, which showed from this plant for the first time.

Compound (2) was isolated as a solid amorphous powder. The molecular formula of (2) was established to be $C_{32}H_{54}O_4$ based on of

ESI-HRTOFMS spectra (m/z 502.4022 [M+H]⁺, calcd. for C₃₀H₅₂O₃ m/z 502.4022) together with NMR data (Tabel 1), thus requiring six degrees of unsaturation. The UV spectrum showed no conjugated double based on the absorption maximum above 200 nm. IR spectrum of (**2**) showed the presence of a hydroxyl group (3200 cm⁻¹), an aliphatic bands (2949 cm⁻¹), a *gem*-dimethyl (1457 and 1380 cm⁻¹) and an ether group (1080 cm⁻¹).

A NMR spectra of (2) was very similar to those of (1), the main differences are the absence one of the hydroxyl group and the presence of an acetyl group at [δ_C 171.1 (s), 21.5 (q) and δ_H 2.08 (3H, s)]. In order to determine the position of newly acetyl group, HMBC experiment was carried, as the results was shown in Figure 1. In the HMBC spectrum, a methyl proton at δ_H 2.08 was correlated to carbonyl ester at δ_C 171.1, whereas the oxygenated methine at δ_H 4.61 was correlated also to carbonyl ester at δ_C 171.1, indicating that an acetyl group was attached at C-3.

A detailed comparison of the NMR spectra of (2) to those of 3α -acetil-20*S*,24*S*-epoxy-25-hydroxydammarane isolated from *A. foveolata* (Roux *et al.*, 1998) revealed that the structures of the two compounds are very similar, consequently compound (2) was identified as 3α -asetil-20*S*,24*S*-epoxy-25-hydroxydammarane, which showed from this plant for the first time.

The cytotoxicity effects of the two isolated compounds (1 and 2) against the P-388 murine leukemia cells were conducted according to the method described in previous paper (Harneti et al., 2012; Harneti et al., 2014; Farabi et al., 2017) and were used an Artonin E (IC₅₀ 0.75 μ g/mL) as a positive control (Farabi et al., 2018; Hidayat et al., 2017). Cytotoxic activity of two dammaranetype triterpenoids, 3α-asetil-20S,24S-epoxy25-hydroxydammarane (2) showed stronger activity than 20S,24S-epoxy-25hydroxydammarane (1), indicated that the presence of an acetyl group increase the cytotoxic activity in dammarane-type triterpenoid sctructure.

Position of	(1)*		(1)**	
Carbon	¹³ C NMR	¹ H NMR	¹³ C NMR	¹ H NMR
	δ_{C} (mult.)	δ _H (Integ. Mult., <i>J</i> =Hz)	$\delta_{\rm C}$ (mult.)	$\delta_{\rm H}$ (Integ. Mult., <i>J</i> =Hz)
1	33.7 (<i>t</i>)	1.42 (1H, <i>m</i>)	34.3 (<i>t</i>)	1.40 (1H, <i>m</i>)
		1.54 (1H, <i>m</i>)		1.56 (1H, <i>m</i>)
2	25.4 (<i>t</i>)	1.55(1H, m)	24.8 (<i>t</i>)	1.56 (1H, <i>m</i>)
		1.62 (1H, <i>m</i>)		1.61 (1H, <i>m</i>)
3	76.4 (<i>d</i>)	3.38 (1H, <i>t</i> , 3.0)	78.5 (<i>d</i>)	4.61 (1H, <i>t</i> , 3.0)
4	37.3 (s)	-	36.8 (s)	-
5	49.6 (<i>d</i>)	1.24 (1H, <i>m</i>)	50.6 (<i>d</i>)	1.42 (1H, dd, 3.0, 12.0)
6	18.3 (<i>t</i>)	1.39 (1H, <i>m</i>)	18.2 (<i>t</i>)	1.38 (1H, <i>m</i>)
		1.54 (1H, <i>m</i>)		1.53 (1H, <i>m</i>)
7	34.8 (<i>t</i>)	1.63 (1H, <i>m</i>)	35.3 (<i>t</i>)	1.65 (1H, <i>m</i>)
		1.74 (1H, <i>m</i>)		1.76 (1H, <i>m</i>)
8	40.7 (s)	-	40.6 (s)	-
9	50.7 (<i>d</i>)	1.44 (1H, dd, 2.4, 5.2)	50.8 (<i>d</i>)	1.20 (1H, dd, 2.6, 5.8)
10	37.7 (s)	-	37.2 (s)	
11	21.7 (<i>t</i>)	1.53 (1H, <i>m</i>)	21.7 (<i>t</i>)	1.52 (1H, <i>m</i>)
		1.24 (1H, dd, 5.2, 7.0)		1.27 (1H, dd, 4.6, 6.5)
12	27.1 (<i>t</i>)	1.75 (1H, <i>m</i>)	27.1 (<i>t</i>)	1.78 (1H, <i>m</i>)
		1.82 (1H, dd, 4.4, 7.0)		1.84 (1H, dd, 6.5, 7.2)
13	42.8 (d)	1.62 (1H, <i>dd</i> , 4.4, 6.2)	42.8 (<i>d</i>)	1.65 (1H, dd, 7.2, 10.8)
14	50.2 (s)	-	50.2 (s)	-
15	31.5 <i>(t)</i>	1.04 (1H, <i>m</i>)	31.6 (<i>t</i>)	1.05 (1H, dd, 6.2, 9.8)
		1.24 (1H, <i>m</i>)		1.48 (1H, <i>m</i>)
16	25.9 (<i>t</i>)	1.51 (1H, <i>m</i>)	25.9 (<i>t</i>)	1.87 (1H, <i>m</i>)
		1.56 (1H, <i>m</i>)		1.92 (1H, <i>m</i>)
17	49.8 (<i>d</i>)	1.44 (1H, <i>dd</i> , 2.5, 6.2)	49.9 (<i>d</i>)	1.46 (1H, <i>dd</i> , 2.7, 6.8)
18	16.2 (q)	0.84 (3H, <i>s</i>)	15.6 (<i>q</i>)	0.96 (3H, <i>s</i>)
19	16.6(q)	0.87 (3H, <i>s</i>)	16.1 (<i>q</i>)	0.85 (3H, <i>s</i>)
20	86.7 (<i>s</i>)	-	86.7 (<i>s</i>)	-
21	27.3 (q)	1.13 (3H, <i>s</i>)	27.4 (<i>q</i>)	1.14 (3H, <i>s</i>)
22	35.3 (<i>t</i>)	1.22 (1H, <i>m</i>)	35.2 <i>(t)</i>	1.22 (1H, <i>m</i>)
		1.34 (1H, <i>m</i>)		1.35 (1H, <i>m</i>)
23	26.4 (<i>t</i>)	1.85 (1H, <i>m</i>)	26.4 (<i>t</i>)	1.87 (1H, <i>m</i>)
		1.76 (1H, <i>m</i>)		1.74 (1H, <i>m</i>)
24	86.3 (<i>d</i>)	3.62 (1H, <i>dd</i> , 4.8, 10.2)	86.4 (<i>d</i>)	3.63 (1H, <i>dd</i> , 4.8, 10.2)
25	70.3 (s)	-	70.4 (s)	-
26	27.9 (q)	1.17 (3H, <i>s</i>)	28.0(q)	1.18 (3H, <i>s</i>)
27	24.1(q)	1.09 (3H, <i>s</i>)	24.1 (<i>q</i>)	1.10 (3H, <i>s</i>)
28	28.4(q)	0.92 (3H, s)	27.9 (q)	0.82 (3H, <i>s</i>)
29	22.2(q)	0.82 (3H, <i>s</i>)	21.8(q)	0.86 (3H, <i>s</i>)
30	15.6(q)	0.95 (3H, <i>s</i>)	16.7 (<i>q</i>)	0.90 (3H, <i>s</i>)
1'			171.1 (s)	-
			1215(a)	2 0X (3H_c)

Table 1. NMR data for Compounds (1 and 2)

*(600 MHz for ¹H and 150 MHz for ¹³C in CDCl₃) ** (500 MHz for ¹H and 125 MHz for ¹³C in CDCl₃)

4. CONCLUSIONS

Two dammarane-type triterpenoid, 20S,24S-epoxy-25-hydroxydammarane (1) and 3α -asetil-20S,24S-epoxy-25-

hydroxydammarane (2) have been isolated from the stembark of *Chisocheton pentandrus*. This results supported the presence of dammarane-type triterpenoid in *Aglaia* genus. Compound (2) showed stronger cytotoxic activity against P-388 murine leukemia cells, indicated that the presence of an acetyl group in dammarane-type triterpenoid structure can increase cytotoxic activity.

ACKNOWLEDGEMENTS

This investigation was supported by Directorate General of Higher Education, Ministry of Research, Technology, and Higher Education, Indonesia (Postgraduate Grant, 2016-2018 by Unang Supratman). We thank Mrs. Suzany Dwi Elita at Department of Chemistry, Faculty of Mathemathics and Natural Sciences, Institute Technology Bandung, Indonesia for cytotoxicity bioassay.

REFERENCES

- Awang K, Loong X, Leong KH, Supratman U, Litaudon M, Mukhtar MR, Mohamad K. 2012. Triterpenes and steroids from the leaves of *Aglaia exima* (Meliaceae). *Fitoterapia*. 83: 1391–1395.
- Farabi K, Harneti D, Nurlelasari, Maharani R, Hidayat AT, Awang K, Supratman U, Shiono Y. 2017. New cytotoxic protolimonoids from the stem bark of Aglaia argentea (Meliaceae). Phytochemistry Letters. 21: 211-215.
- Farabi K, Harneti K, Nurlelasari, Maharani K, Hidayat AC, Awang K, Supratman U, Shiono Y. 2018. New cytotoxic pregnanetype steroid from the stem bark of Aglaia elliptica (Meliaceae). Record of Natural Products. 12(2): 121-127.
- Harneti D, Supriadin A, Ulfah M, Safari A, Supratman U, Awang K, Hayashi H. 2014. Cytotoxic constituents from the bark of *Aglaia eximia* (Meliaceae). *Phytochem. Lett.* 8: 28–31.
- Harneti D, Tjokronegoro R, Safari A, Supratman U, Loong X, Mukhtar MR, Mohamad K,

Awang K, Hayashi H. 2012. Cytotoxic triterpenoids from the bark of *Aglaia smithii* (Meliaceae). *Phytochem. Lett.* 5: 496–499.

- Hidayat AC, Farabi K, Harneti D, Maharani R, Darwati, Nurlelasari, Mayanti T, Setiawan AS, Supratman U, Shiono Y. 2017. Cytotoxicity and structure activity relationship of dammaranetypetriterpenoids from the bark of *Aglaia elliptica* against P-388 murine leukemia cells. *Natural Product Sciences*. 23(4): 291-298.
- Jin CL, Kou XG, Miao ZH. 2011. Observation of ginsenosided Rg3 combined with chemotherapy as adjuvant treatment for elder nonsmall-cell lung patients. J. Xinxiang Med. Coll. 28: 229–232.
- Liu JP, Lu D, Li PY. 2011. Two new dammaranetype triterpene saponins from red American ginseng. J. Asian Nat. Prod. Res. 13: 198–204.
- Leong KH, Looi CY, Loong XM, Cheah FK, Supratman U, Litaudon M, Mustafa MR, Awang K. 2016. Cycloart-24-ene-26-ol-3one, a new cycloartane isolated from leaves of *Aglaia exima* triggers tumour necrosis factor- receptor 1-mediated caspase-dependent apoptosis in colon cancer cell line. *PLOS ONE*. 4: 1-17.
- Phan MG, Truong TTC, Phan TS, Matsunami K, Otsuka H. 2011. A new diarylheptanoid and a rare dammarane triterpenoid from *Alnus nepalensis. Chem. Nat. Compd.* 47: 735–73.
- Roux D, T MT, Adeline, T Sevenet, H Hadi, Pais M, 1998. Foveolins A dan B, dammarane triterpenes from *Aglaia foveolata*. *Phytochemistry*. 49(6): 1745-1748.
- Su B, Chai H, Mi Q, Riswan S, Kardono LBS, Afriastini JJ, Santarsiero BD, Mesecar AD, Fransworth NR, Cordell GA, Swanson SM, Kinghorn D. 2006. Activity-guided isolation of cytotoxic constituents from the bark of *Aglaia crassinervia* collected in Indonesia. *J. Bioorg. Med Chem.* 14: 960-972.
- Zhang F, Wang J, Gu Y, Kong Y. 2010. Triterpenoids from *Aglaia abbreviata* and their cytotoxic activities. *J. Nat. Prod.* 73: 2042–2046.

Zhao M, Fu LW, Li N, Tang WX, Li MJ. Hasegawa T, Ogura H, Kataoka T, Hirose K, Ando M. 2007. The ursane-, oleanane-, dammarane-, lupane-, and taraxasterane-

type triterpenes isolated from Nerium oleander and their biological activities. J. *Recent Progr. Med. Plants.* 16: 83–107.