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 Non-edible oil, such as Jatropha oil, is an interesting feedstock for the development of 

renewable diesel (green diesel). Catalytic deoxygenation using natural zeolite-supported 

Mo-based catalysts is a promising process for the conversion of Jatropha oil to green 

diesel. Mo and MoP catalysts supported on natural zeolite were synthesized by wet 

impregnation at a concentration of 5% (w/w). The catalysts were characterized by XRD, 

XRF, SAA and NH3-TPD. The catalysts were successfully synthesized with the 

appearance of Mo and MoP peaks on the catalyst diffractogram. XRF results also 

showed that Mo and P were present in the catalyst. Metal impregnation decreased the 

surface area and pore volume of the catalyst, but increased the average pore diameter. 

The NH3-TPD profile of the catalyst showed that the weak acid sites of both catalysts 

were larger than the strong acid sites. Based on the activity test of catalytic 

deoxygenation of Jatropha oil, the MoP/HZ catalyst produced a higher conversion (67%) 

and liquid product yield (79%) than Mo/HZ. This is associated with a larger pore 

diameter, so that the distribution of reactants on the catalyst surface is more optimal. 

However, the highest green diesel selectivity of 82% is produced by the Mo/HZ catalyst. 

The Mo/HZ catalyst is more oriented towards the HDO reaction, whereas the MoP/HZ 

catalyst is more oriented towards the DCO/DCO2 reaction. 
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1. INTRODUCTION  
The world's demand for energy is on the rise, 

but this state of affairs is not in balance with the 

increase in the number of energy sources. Fossil 

energy, which is the main source of energy, continues 

to decline. Oil reserves, especially in Indonesia, 

decreased from 3.31 (2016) to 2.41 million stock tank 

barrels MMSTB (2023) 1. Another problem that arises 

is the increasing pollution caused by using fossil fuels 
2,3,4. This encourages the search for renewable and 

environmentally friendly alternative energy. Biodiesel 

has emerged as a first-generation biofuel that can 

replace conventional diesel 5. The Indonesian 

government has developed renewable energy in the 

form of biodiesel (first-generation biofuel) as a 

substitute fuel for diesel. However, biodiesel has 

weaknesses such as low thermal stability, low calorific 

value, and low cetane number 6.  

Green diesel has emerged as a second-

generation biofuel that can overcome these 

shortcomings. Green diesel is a hydrocarbon 

compound derived from vegetable/animal oil with 

diesel-like characteristics. Green diesel contains no 
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oxygen, therefore, its thermal stability, heating value, 

and cetane number are higher 7. Green diesel is also 

environmentally friendly because it tends not to 

produce gas emissions in the form of SOx and is able 

to reduce COx gas emissions 8.  

Potential feedstocks for green diesel production 

include non-edible oils such as Jatropha oil. This oil is 

obtained from the seeds of the jatropha plant, and the 

plant is easy to cultivate 9. The oil content in Jatropha 

seeds is quite high, reaching 40-60%. The composition 

of fatty acids in Jatropha oil consists of oleic acid 

(37.44-44.91%), linoleic acid (33.83-34.14%), stearic 

acid (7.33-15.59%), and palmitic acid (9.84-12.22%) 
10,11. The catalytic deoxygenation method using 

hydrogen can be used to convert Jatropha oil into 

green diesel. This method is able to produce a higher 

conversion and selectivity as well as a cetane number 

of the green diesel 12. Some catalysts that have been 

used in the conversion of Jatropha oil to green diesel 

are NiP/γ-Al2O3 13, Ni2P/Zr-SBA-15 14, Co/MWCNT, 

Ni/MWCNT, and Ni-Co/MWCNT 15, Zr/γ-Al2O3 
16, 

and Ni-Mo2C/MCM-41 17. Catalysts typically use 

transition metals with good catalytic activity, 

enhanced by synthetic supports. Support synthesis 

requires a lot of chemicals (reagents) and the process 

is quite difficult. This affects the high cost of catalyst 

production. Therefore, in this study, natural zeolite 

was used as a support for Mo and MoP catalysts. In 

addition to its low price, zeolite has pores and contains 

Lewis and Bronsted acid sites on its surface, which can 

increase its catalytic activity. The surface area of 

zeolite can also be modified by the desilication and 

activation process. In previous studies, the surface 

area of zeolite can be increased from 43.570 to 

155.402 m2/g 18. Natural zeolites have also been used 

as a NiMo catalyst support for the deoxygenation of 

waste cooking oil, palm oil, and palm fatty acid 

distillate 19-22.  

Molybdenum (Mo) based catalysts show good 

catalytic activity in green diesel production. 

Molybdenum sulfide and oxide are the most common 

forms of Mo catalysts, and are widely used in 

hydrotreating and oxidation reactions 23-25. The 

activity of the Mo catalyst can be increased by adding 

phosphorus (P) to form metal phosphide (MoP). The 

addition of P can prevent the deactivation of the metal 

into the oxide form 26, well-dispersed active phase 27, 

increase the acidity of the catalyst 28, and produce 

more primary alkane products through direct 

hydrodeoxygenation reactions 29. Compared to others, 

MoP catalysts are more active and stable 30. Alvarez-

galvan et al. found that the order of the greatest 

catalytic activity of the metal phosphides is as follows 

MoP/SiO2 > CoP/SiO2 > NiP/SiO2 > WP/ SiO2 
31.  

In this study, Mo and MoP catalysts supported 

on natural zeolite were used for catalytic 

deoxygenation of Jatropha oil to green diesel. The 

catalyst was synthesized by wet impregnation method 

with Mo content of 5% and Mo/P molar ratio of 2:1. 

Before performing the catalytic activity test, the 

catalyst was characterized by surface area analyzer 

(SAA), X-ray diffraction (XRD), NH3 temperature 

program desorption (NH3-TPD), and X-ray 

fluorescence (XRF). The activity of the catalyst was 

tested at a temperature of 350 oC under the pressure of 

H2 gas for 4 h with a catalyst concentration of 20%. 

The resulting product was analyzed for composition 

using gas chromatography-mass spectroscopy (GC-

MS) to determine the yield, conversion and selectivity 

of green diesel. 

 

2. RESEARCH METHODS  
Materials and Tools 

The materials used were jatropha oil from a 

supplier in Jakarta and natural zeolite from CV. Mina 

Tama Lampung. All reagents used were from Merck 

with pure quality (p.a) such as sodium hydroxide, 

ammonium acetate, ammonia, phosporic acid and 

molibdenum trioxide. The tools used were a set of 

stainslessteel batch reactor, Gas Chromatography 

Mass Spectroscopy (Shimadzu QP 2010), X-Ray 

Diffraction (Rigaku Miniflex 600), Surface Area 

Analyzer (Micromeritics TriStar II 3020), X-Ray 

Fluorescence (Bruker S2 PUMA), and Ammonia-

Temperature Program Desorption (Micromeritics 

Chemisorb 2720).  

 

Modification of Natural Zeolite  

Natural zeolite was washed with distilled water 

and dried at 105 oC. Some 200 mL of 0.5 M NaOH 

was added to the zeolite (10 g) and heated at 75 oC for 

2 h. The zeolite was neutralized with distilled water 

and dried at 100 oC for 12 h. The zeolite was activated 

with CH3COONH4 1 M at 90 oC for 5 h. After washing 

and drying, the zeolite was calcined at 450 oC for 3 h 
32 and then labeled as HZ.  

 

Synthesis of Mo/HZ Catalyst 

The synthesis was carried out by wet 

impregnation method with 5% (w/w) Mo metal 

concentration. A total of 0.7485 g MoO3 was dissolved 

in 25 mL of 25% NH4OH, then HZ (10 g) was added. 

The mixture was stirred for 2 h at room temperature 

and dried at 100 oC for 12 h. The catalyst was then 

calcined at 500 oC for 3 h, followed by reduction with 

H2 gas for 4 h without temperature change 33. 

 

Synthesi of MoP/HZ Catalyst 

For the MoP/HZ catalyst, after dissolving MoO3 

in 25% NH4OH, 0.1752 mL of 85% H3PO4 was added 

dropwise. HZ (10 g) was then added and stirred for 2 

h at room temperature. The dried mixture was reduced 

with H2 gas for 3 h at 600 oC 34.  
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Characterization of the Catalyst 

X-ray diffraction (XRD) measurements for 

crystal phase identification were performed at a 

voltage of 40 kV, a 2θ angle in the range of 5-80o, and 

a scan rate of 2o/min. XRD patterns were compared 

with JCPDS (The Joint Committee on Powder 

Diffraction Standards) for material identification. 

Crystal size was calculated using the Debye-Scherrer 

equation. The surface properties of the catalyst were 

determined using a surface area analyzer 

(Micromeritics TriStar II 3020) after degassing at 320 

◦C for 5 h. The pore size distribution and pore volume 

of the catalyst were calculated using the Barret Joyner 

Halenda (BJH) model, and the specific surface area 

was obtained from the Brunauer, Emmett, and Teller 

(BET) equation. The elemental composition was 

analyzed by X-ray fluorescence (XRF). Sample (0.5 g) 

was placed into the holder and compacted using a 

presser. The pressed sample was irradiated with X-

rays at a voltage of 40 kV and a current of 45 mA. The 

ammonia temperature desorption (NH3-TPD) program 

was used to determine the acidity of the catalyst.  

   

Test of Physical and Chemical Properties of 

Jatropha Oil 

The compound composition of jatropha oil was 

analyzed using a GCMS instrument. The sample was 

first esterified and then injected up to 0.1 mL into the 

Agilent HP-5 column at 50 oC. The temperature was 

increased at a rate of 5 oC/min to 260 oC. Moisture 

content, free fatty acids, iodine number and 

saponification were analyzed using the SNI method 

01-3555-1998. 

 

 
Figure 1. Schematic of experimental devices 35 

 

Catalytic Deoxygenation of Jatropha Oil 

Jatropha Oil (10 g) and the catalysts (2 g) were 

introduced into the reactor (Figure 1). H2 gas was 

injected at a pressure of 40 bar. The reactor heater was 

ignited to a temperature of 350 oC. The stirrer was 

turned on at 300 rpm and the reaction was allowed to 

proceed for 4 h. The resulting product was filtered to 

separate the catalyst and the filtrate was analyzed for 

chemical composition using GC-MS. The yield of 

liquid/gas products and the selectivity of the 

hydrocarbon fractions (gasoline, kerosene and green 

diesel) produced were determined based on equations 

(1) and (2) 22. 

 

Liquid/gas fraction = 
Weight of liquid/gas product 

Weight of feed (jatropha oil)
 x 100%  (1) 

 

Selectivity= 
Area of desired hydrocarbon fraction

Total of area products
𝑥100%     (2) 

 

3. RESULTS AND DISCUSSION 
Physicochemical Characteristics of the Catalyst 

The diffraction pattern of Mo/HZ catalyst 

shows the presence of clinoptilolite zeolite phase with 

the appearance of peaks at 2θ: 9.92o, 11.18o, 13.06o, 

17.3o, 26.04o, and 30.18o (JCPDS No. 25-1349) 

(Figure 2). This phase is also present in the MoP/HZ 

catalyst (2θ: 10.1 o, 11.32 o, 13.2 o, 17,56 o, 22.62 o, 

26.39 o, and 30.36 o). Thus, metal impregnation has no 

significant effect on the support phase. Crystal peaks 

of Mo on Mo/HZ catalyst appeared at 2θ: 36.96o, 

49.82o, and 70.06o (JCPDS No. 01-1208). Peaks of 

MoP detected at 2θ: 28.14o and 31.68o (JCPDS No. 24-

0771). Usman et al. 36 and Nie et al.37 got MoP peak 

on 2θ: 32.1o, 43.1o, and 57.0o. The crystal size of the 

Mo produced, as determined by the Debye-Scherrer 

equation, was 35.512 nm and the MoP was 28.822 nm 

(Table 1). The addition of P can reduce the crystal size 

of the catalyst.  

The surface properties of the catalysts, 

including BET surface area, average pore diameter 

and pore volume, are shown in Table 1. The Mo/HZ 

catalyst produced a higher surface area (40.4649 m2/g) 

and pore volume (0.0620 cm3/g) than the MoP/HZ 

catalyst (surface area 30.7816 m2/g and pore volume 

(0.0492 cm3/g). The addition of P can reduce the 

surface area of the catalyst by partially covering the 

catalyst pores. Compared to the support (HZ), the 

surface area of the catalyst is smaller. The surface area 

of HZ is 155.402 m2/g 35. Metal impregnation on the 

surface of the support may cover the pores of the 

catalyst, thus reducing the surface area 38. NiP/SiO2 

catalyst also produces lower surface area and pore 

volume than SiO2 
39.  

In contrast, the pore diameter of the catalyst 

increases relative to its support (HZ). The presence of 

metal causes the micropores to clog, increasing the 

average pore diameter. The large pore diameter is 

beneficial for reactant diffusion while increasing 

deoxygenation capability 40. Mo/HZ and MoP/HZ 

catalysts showed an average pore diameter of 12.9900-

14.7338 nm, indicating the presence of mesopores. 

This is supported by the nitrogen adsorption-

desorption isotherms of both catalysts (Figure 3a). 
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The resulting isotherms are Type IV and Type IV 

hysteresis loop. These are attributed to the mesoporous 

structure of the catalyst. Pore distribution of the 

catalyst (Figure 3b) The pore diameter shows that the 

catalyst has a pore size of <2 nm (micropore) and >2 

nm (mesopore), which indicates that the catalyst 

support is a hierarchical type zeolite because it has two 

different pore sizes 41. This result is supported by Aziz 

et al. who also obtained NiAg/HZ catalyst pore 

distributions of 1-23 nm 42.  

 

 
Figure 2. XRD patterns of catalysts 

 

 

The composition of the element contained in the 

catalyst is given in Table 1. The impregnation of Mo 

and P elements on the catalyst decreased the Si/Al 

ratio compared to HZ, but the Si/Al ratio of both 

catalysts (Mo/HZ and Mop/HZ) was almost the same. 

The P impregnation was successfully carried out with 

the increase of P concentration on the MoP/HZ 

catalyst. Therefore, XRF analysis verified the 

effectiveness of wet impregnation in loading accurate 

amounts of metal precursors onto the catalyst support7. 

Mo/HZ catalyst has higher acidity (1.4832 mmol/g) 

than MoP/HZ (1.2368 mmol/g). The increased surface 

area of Mo/HZ relative to MoP/HZ results in a larger 

surface area at the active site. However, the acidity of 

Mo/HZ is lower compared to HZ. HZ has a large 

surface area (155.5700), meaning it has strong acidity. 

This acidity comes from Lewis and Bronsted sites on 

the zeolite surface after desilication and activation. 

Based on profile of NH3-TPD (Figure 4), Both 

catalysts have peaks in the temperature range of 100-

250 oC and 400-600 oC, indicating weak and strong 

acid sites, respectively 43. Weak acid sites (100-250 
oC) are Lewis acid sites, and strong acid sites (> 400 
oC) are Bronsted acids 44. As with the support (HZ), 

both catalysts have weak acid sites with larger peaks 

than strong acid sites 35. 
 

Table 1. Physicochemical properties of catalysts 

Sample Mo/HZ MoP/HZ HZ 35 

Surface area (m2/g) 40.4649 30.7816 155.5700 

Avarage pore 

diamater (nm) 

12.9900 14.7338 3.824 

Pore volume (cm3/g) 0.0620 0.0492 0.190 

Acidity (mmol/g) 1.4832 1.2368 2.431 

Crystal size (nm) 35.512  28.822 - 

Composition (%):    

Mo 5.5 6.0 0 

P 0.2 0.8 0 

Si 31.6 30.9 35.7 

Al 8.8 8.7 8.7 

Si/Al ratio 3.59 3.51 4.10 

 

 
Figure 3. a) Nitrogen adsorption-desorption isotherms, b) pore diameter distribution of catalysts 
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Figure 4. TPD-NH3 profile of catalysts 

 

Physicochemical Properties of Jatropha Oil 

The fatty acid composition of Jatropha oil was 

analyzed by GC-MS instrument. Based on Table 2, 

the largest fatty acid composition is oleic acid 51.28%, 

followed by linoleic acid 35.61%, palmitic acid 

8.08%, pentadecanoic acid 4.69%, and stearic acid 

0.25%. Oleic acid is the largest component of Jatropha 

oil. This has also been found by other researchers 15,14. 

The water content and density of the Jatropha oil 

produced were 0.05 wt% and 0.966 g/cm3, higher than 

Asikin-Mijan et al. (0.01 wt% and 0.920 g/cm3) 15, 

with lower free fatty acid content. This difference is 

due to the different raw material sources used.  

 
Table 2. Physicochemical properties of the Jatropha oil 

Oil properties This study Asikin-Mijan et al., 15 Tan et al., 14 

Water content (wt%) 0.05 0.01 - 

FFA content (wt%) 10.781 15.4 - 

Density (g/cm3) 0.966 0.920 - 

Fatty acid composition (%):    

Oleic acid (C18:1) 51.28 39.77 40.7 

Linoleic acid (C18:2) 35.61 31.52 37.6 

Palmitic acid (C16:0) 8.08 20.16 13.3 

Pentadecanoic acid (C15:0) 4.69 - - 

Stearic acid (C18:0) 0.25 7.22 6.7 

  

Catalytic Activity  

The catalyst activity was tested on the catalytic 

deoxygenation of Jatropha oil at a temperature of 350 
oC, reaction time of 4 hours, catalyst concentration of 

20% (w/w), stirring speed of 400 rpm, and H2 gas 

pressure of 40 bar. Catalytic deoxygenation of 

Jatropha oil produces liquid and gaseous products. The 

conversion of the Jatropha oil produced ranges from 

52-67% (Figure 5). The support (HZ) produces a 

lower conversion compared to Mo/HZ and MoP/HZ 

catalysts, as well as a lower yield of liquid products. 

This is due to the smaller pore diameter of HZ 

compared to Mo/HZ and MoP/HZ, which hinders the 

diffusion of reactants into the catalyst pores.  

On the other hand, HZ produced a higher yield 

of gas products. This can be attributed to the high 

acidity of HZ (especially the strong acid site), which 

triggers side reactions in the form of cracking, 

producing light fractions in the form of gas. Mo and P 

impregnation in HZ can increase the conversion and 

yield of liquid products. The MoP/HZ catalyst 

produced the highest Jatropha oil conversion of 67% 

and liquid product yield of 79%. The larger pore 

diameter of the MoP/HZ catalyst increases the 

diffusion of the reactants, thereby increasing the 

catalyst activity. The composition of the resulting 

liquid product was determined by GC-MS. Based on 

Figure 6, the highest selectivity of green diesel (C15-

18) was produced by the Mo/HZ catalyst (82%), 

followed by MoP/HZ (55%) and HZ (66%). 

Deoxygenation of palm fatty acid distillate using 

Mo/AC and Cr2O3/AC catalysts resulted in higher C15-

17 selectivity compared to AC 38,40. This shows that the 

addition of metal can increase the activity of the 

catalyst deoxygenation.  

The highest selectivity of kerosene (C14-15) is 

produced by the HZ catalyst (22%), while the highest 

selectivity of gasoline (C5-12) is produced by the 

MoP/HZ catalyst (38%). The addition of P to the 

catalyst can increase the selectivity of gasoline. In 

previous studies, the deoxygenation of Jatropha oil 

using the Ni2P/Zr-MCM-41 catalyst resulted in a green 
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diesel selectivity of 50.37% 45. The use of the NixPy 

catalyst in the hydrodeoxygenation of palm oil 

resulted in a green diesel yield of 63% 46. The results 

obtained were lower than the Mo/HZ catalyst but close 

to the MoP/HZ catalyst.  

 

 
Figure 5. Product yield from catalytic deoxygenation of Jatropha oil. Reaction conditions: T = 350 ◦C, t = 4 h, PH2 = 40 bar 

and catalyst concentration = 20 wt%. 

 

 
Figure 6. Biofuel fraction from catalytic deoxygenation of Jatropha oil. Reaction conditions: T = 350 ◦C, t = 4 h, PH2 = 40 bar 

and catalyst concentration = 20 wt%. 

 

Carbon distribution from biofuel fraction ranges 

from C6 to C18 (Figure 7). In general, C17 and C18 

compounds produce the highest selectivity. This is 

because oleic acid (C18:1) and linoleic acid (C18:2) 

are the major components of Jatropha oil. The 

presence of the C17 and C18 compounds can be 

explained by the proposed mechanism of the reaction 

(Figure 8).  

Triglycerides (TGs) in Jatropha oil undergo 

hydrogenation reactions to convert unsaturated fatty 

acids (oleic and linoleic acids) to saturated fatty acids 

(stearic acid) (Stage 1) 46. In addition, hydrogenolysis 

reactions occur with the conversion of TGs to stearic 

acid and propane gas (stage 2). Stearic acid undergoes 

three reactions in the presence of hydrogen. First, the 

hydrodeoxygenation (HDO) reaction, in which stearic 

acid is converted to octadecane (C18H38) and water 

(stage 3). Second, the decarboxylation reaction 

(DCO2) produces heptadecane (C17H36) and CO2 gas 

(stage 4). Third, the decarbonylation reaction (DCO) 

produces heptadecane (C17H36), CO gas, and water 

(stage 5). Octadecane and heptadecane compounds 

were detected from the GC-MS results. The 

appearance of other compounds (C<15) is caused by 

the occurrence of side reactions in the form of cracking 

of HDO, DCO and DCO2 products (stage 6). The 

Mo/HZ catalyst produces the highest C18 selectivity 

compared to MoP/HZ and HZ. This shows that the 

Mo/HZ catalyst is more oriented towards the HDO 

reaction, while the MoP/HZ catalyst is more oriented 

towards the DCO/DCO2 reaction. 
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Figure 7. Effect of catalysts on hydrocarbon selectivity Reaction conditions: T = 350 ◦C, t = 4 h, PH2 = 40 bar and catalyst 

concentration = 20 wt%. 

 

 
Figure 8. Proposed catalytic deoxygenation reaction pathway of Jatropha oil to hydrocarbon over MoP/HZ catalysts 

 

4. CONCLUSIONS  
Mo and MoP catalysts supported on natural 

zeolite have been successfully synthesized by the wet 

impregnation method. This is evidenced by the 

appearance of Mo and MoP peaks on the catalyst 

diffractogram. The resulting metal concentration is 

close to the theoretical concentration. The surface area 

and pore volume of the catalyst decreased after 

impregnation, but the average pore diameter 

increased. Catalytic deoxygenation of Jatropha oil 

using MoP/HZ catalyst resulted in conversion and 

liquid product yield of 67% and 78% respectively, 

higher than those of Mo/HZ and HZ catalysts. 

However, the highest green diesel selectivity was 

produced by the Mo/HZ catalyst (82%). The Mo/HZ 

catalyst is more oriented towards the HDO reaction, 

while MoP/HZ is more oriented towards the 

DCO/DCO2 reaction. 
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