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Abstract 

 
Two steroid compounds, ergosterol peroxide (1) and stigmasterol (2) have been isolated from the stembark of 

Aglaia simplicifolia belong to Meliaceae family. The chemical structures of 1 and 2 were identified based on 

spectroscopic evidence including UV, IR, 1D NMR, 2D NMR as well as mass spectra and by comparison with 

those previously reported spectra data. Both compounds were evaluated for their cytotoxic effects against 

cervical cancer HeLa cells in vitro. Compounds 1 and 2 showed cytotoxicity activity against HeLa cervical 

cancer cells with IC50 values of 0.80 and 26.42 µM, respectively.  
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1. INTRODUCTION 
 Meliaceae is the important plant 

families that have utilized and generally grow 

in tropical countries. Meliaceae plant is known 

for the presence of the various secondary 

metabolite compounds that exhibit interesting 

biological activity such as hypoglycemia, 

anticancer, anti-inflammation, antifeedant, 

antitumor (Awang et al., 2012; Leong et al., 

2016; Su et al., 2006) and insecticidal activity 

(Nugroho et al., 1999).  

The Aglaia genus is a plant of the 

tropical rain forest in the Indomalesiana region 

and mainly distributed in tropical countries 

including India, Indonesia, Malaysia and parts 

of the Western Pacific. Aglaia is the largest 

genus belongs to the Meliaceae family contains 

more than 150 species (Hidayat et al., 2017a; 

Hidayat et al., 2017b; Awang et al., 2012) and 

about 65 species grown in Indonesia (Wood, et 

al., 1970; Heyne 1982). Phytochemical studies 

on Aglaia species have led to the identification 

of main compounds such as sesquiterpenoid, 

diterpenoid, triterpenoid, limonoid, steroid, 

lignan, and alkaloid groups (Harneti & 

Supratman, 2021).  

Aglaia simplicifolia is found in 

Sumatra and Kalimantan, Indonesia. So far, 

reports on the content of secondary metabolite 

compounds from this plant are the only 

senecracidiol isolated from the bark of the 

stem (Kurniasih et al., 2019). Although 

steroids of other Aglaia species have been 

investigated previously, the ergosterol 

peroxide of A. simplicifolia is yet to be 

reported. 
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2. MATERIALS AND METHOD 
Tools and Materials 

Thin layer chromatography (TLC): 

silica gel plates (GF254, Merck, 0.25 mm); 

visualized by heating and immersing in 10% 

H2SO4 in EtOH. Column chromatography 

(CC): commercial SiO2 (100 – 200 and 200 – 

300 mesh; Merck, Darmstadt, Germany), and 

reversed-phase C18 (RP-C18 ; 40 – 63 mm; 

Fuji Sylisia, Japan); fractions were monitored 

by TLC. IR Spectra: Perkin-Elmer spectrum-

100 FT-IR (Waltwam, MA, USA); KBr disks. 
1
H- and 

13
C-NMR spectra: Bruker Topspin 

spectrometer at 500 and 125 MHz respectively 

(Bruker BioSpin GmbH, Silberstreifen 4, D-

76287 Rheinstetten, Germany); in CDCl3; at 

room temperature; d in ppm relative to Me4Si 

as internal standard, J in Hz. HR-TOF-MS: 

Synapt G2 mass spectrometer instrument 

(Waters, Milford, MA, USA); in m/z.  

Cervical cancer line HeLa was 

maintained in RPMI-1640 medium (Gibco) 

supplemented with 10% fetal bovine serum 

(FBS) and 1% pen strep (Gibco). Cultures 

were grown in a humidified incubator at 37 °C 

and 5% CO2.  The stembark collected from 

Bogor Botanical Garden and taxonomically 

identified as A. simplicifolia by Mr. Didik 

Widyatmoko. A voucher specimen (No. BO-

1295311) was deposited in Bogoriense 

Herbarium, Bogor, West Java Province, 

Indonesia. 

 

Extraction and Isolation 

 Air-dried stems (1.10 kg) were 

extracted three times with MeOH (3x4 L; 3 h, 

3 h, and 2 h, respectively) at room temperature. 

After removal of MeOH under reduced 

pressure with a rotary evaporator, the viscous 

residue was suspended in H2O:MeOH (4:1) 

and partitioned successively with n-hexane (10 

L), ethyl acetate (10 L), and n-butanol (10 L). 

Evaporated of these extracts resulted of n-

hexane (14.5 g), ethyl acetate (28.0 g) and n-

butanol (14.5 g), respectively. 

 The n-hexane -soluble extract (14.5 

g) was fractionated by vacuum liquid 

chromatography (silica gel G60; aq. n-hexane-

ethyl acetate-methanol, gradient) to give nine 

fractions, Frs. A – I, combined according to the 

TLC results. Fraction D (1.29 g) was further 

subjected to column chromatography (SiO2; n-

hexane-ethyl acetate 100:0 to 40:60, gradient) 

to give nine subfractions, Frs. D.1 – D.9. 

Fraction C.6 (142.3 mg) was subjected to CC 

(SiO2; methylene chloride: ethyl acetate (49: 1) 

to yield compound 1 (5.6 mg). Fraction D.7 

(109.0 mg) was separated by CC (SiO2; 

methylene chloride: ethyl acetate (49: 1) to 

yield 2 (20.6 mg).  

 

Cytotoxic Activity (Resazurin assay) 

 Cell viability was assessed by 

resazurin assay following the previously 

reported procedures (Sittampalam et al., 2004). 

Cells were seeded into a 96-well plates at a 

density of 17,000 cells/well and stabilized at 

37 °C in 5% CO2 for 24 h. Cells were 

incubated for 24 h with compounds 1 and 2. 

Ten cells were treated with 10 µL of Presto 

Blue™ Cell Viability Reagent for another 1-2 

hours. Cell viability assessed by measuring the 

absorbance at 570 nm with a reference 

wavelength of 600 nm using an EMax 

Microplate Reader (Molecular Devices, 

Sunnyvale, CA, USA). For the positive 

control, cells were incubated for 24h with 100 

µL of Cisplatin. 

 

3. RESULT AND DISCUSSION 
Structure Elucidation 

 In our phytochemical research on 

Aglaia simplicifolia, two steroids, ergosterol 

peroxide (1) and stigmasterol (2) (Figure 1) 

were isolated from the nonpolar fractions. 

Their structures were determined by a detailed 

analysis of their spectroscopic data.  

 

HO
O

O

H

H

   
(1) 

 

   

H H

H

HO  
(2) 

Figure 1. Chemical structures of compounds 1 

and 2 
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Table 1. NMR data for compounds 1 and 2 (CDCl3, 500 MHz for 
1
H and 125 MHz for 

13
C) compared with 

Ergosterol Peroxide (Nowak et al., 2016) and Stigmasterol (Cayme & Ragasa, 2004) 

 
Posi

tion 

 Compound (1) Ergosterol peroxide* Compound (2) Stigmasterol** 
1H NMR  

δH (Integral, 

mult, J=Hz) 

δ  13C 1H NMR  

δH (Integral, 

mult, J=Hz) 

δ  13C 1H NMR  

δH (Integral, 

mult, J=Hz) 

δ  13C 1H NMR  

δH (Integral, 

mult, J=Hz) 

δ  13C 

1 1.70, dd, J = 

13.8;3.4 

34.71 1.73, dd, J = 

13.8; 3.4  
34.7 

1.08 , m; 1.84, 

m 

37.4 (t) 1.73, dd, J = 

13.8; 3.4  
34.7 

2 - 30.13  
30.1 

1.49, m; 1.81, m 31.8 (t)  
30.1 

3 3.95, m 66.47 3.98, m  
66.5 

3.52, m 72.0 (d) 3.98, m  
66.5 

4 - 36.98  

37.0 

2.28, dd, J = 
2.0;5.2 

2.30, dd, J = 

2.0;5.2 

42.5 (t) 
 

 

37.0 

5 - 82,15  
82.2 

- 140.9 

(s) 

 
82.2 

6 6.22, d, J=8.5 135.41 6.25, d, J = 8.5  
135.4 

5.35, d, J = 5.2 121.9 
(d) 

6.25, d, J = 8.5  
135.4 

7 6.51, d, J=8.6 130.75 6.52, d, J = 8.6  
130.8 

1.54, m; 1.96, m 32.1 (t) 6.52, d, J = 8.6  
130.8 

8 - 79.42  
79.4 

1.46, m 32.0 (d)  
79.4 

9 - 51.13  
51.1 

0.94, m 50.3 (d)  
51.1 

10 - 36.95  36.9 - 36.7 (s)  36.9 

11 1.21, m; 1.55, m  20.63 1.23, m; 1.55, m  
20.6 

1.46, m; 1.49, m 21.3 (t) 1.23, m; 1.55, m  
20.6 

12 1.25, m; 1.98, m  39.36 1.27, m; 1.98, m  39.4 1.15, m; 1.95, m 39.9 (t) 1.27, m; 1.98, m  39.4 

13 - 44.57  44.6 - 42.5 (s)  44.6 

14 1.55, m  51.69 1.59, m  
51.7 

1.03, m 56.9 (d) 1.59, m  
51.7 

15 1.42, m; 1.66, m  23.40 1.42, m; 1.66, m  23.4 1.07, m; 1.56, m 24.5 (t) 1,42, m; 1,66, m  23.4 

16 1.32, m; 1.81, m  28.62 1.33, m; 1.81, m  
28.7 

1.26, m; 1.67, m 28.4 (t) 1.33, m; 1.81, m  
28.7 

17 1.25, m  56.23 1.25, m  
56.2 

1.13, m 56.1 (d) 1.25, m  
56.2 

18 0.81s 12.87 0.83, s  
12.9 

0.67, s 12.1 (q) 0.83, s  
12.9 

19 0.83 s 18.16 0.89, s  
18.2 

1.00, s 19.5 (q) 0.89, s  
18.2 

20 2.03, m 39.69 2.05, m  
39.7 

2.02, m 40.7 (d) 2.05, m  
39.7 

21 1.17, d, J = 6.7 20.87 1.00, d, J = 6.7  
20.9 

0.92, d, J = 6.5 21.2 (q) 1.00, d, J = 6.7  
20.9 

22 5.17, dd, J = 7.5; 
15.3 

135.19 5.16, dd, J = 
7.5; 15.3  

135.2 
5.16, dd, J = 
8.5; 15.0 

138.5 
(d) 

5.16, dd, J = 7.5; 
15.3  

135.2 

23 5.11, dd, J = 8.0; 

15.3 

132.33 5.14, dd, J = 

8.0; 15.3  
132.3 

5.00, dd, J = 

8.5; 15.0 

129.5 

(d) 

5.14, dd, J = 8.0; 

15.3  
132.3 

24 1.88, m  42.78 1.86, m  
42.8 

1.53, m 51.4 (d) 1.86, m  
42.8 

25 1.62, m  33.07 1.6, m  
33.1 

1.45, m 31.8 (d) 1,6, m  
33.1 

26 0.84, d, J = 6.8  19.63 0.82, d, J = 6.8  
19.6 

0.84, d, J = 6.4 21.3 (q) 0.82, d, J = 6.8  
19.6 

27 0.87, d, J = 6.6  19.93 0.83, d, J = 6.6  
20.0 

0.82, d, J = 6.1 19.1 (q) 0.83, d, J = 6.6  
20.0 

28 
29 

0.93, d, J = 6.8 17.55 0.91, d, J = 6.8  

17.6 

1.15, t, J = 3.2 
0.80, t, J = 6.0 

25.6 (d) 
12.2 (q) 

0.91, d, J = 6.8  

17.6 

*  (CDCl3, 500 MHz for 1H and 125 MHz for 13C)  
** (CDCl3, 400 MHz for 1H and 100 MHz for 13C)  

 

 

Compound 1 was obtained as colorless 

needles with a melting point between 179–182 

°C. The HR-TOF-MS result at m/z 451.3748 

([M + Na
+
]; calc. 428.3704) indicated that it 

has a molecular formula of C28H44O3 with 

seven degrees of unsaturation. The IR 

spectrum showed the functional group of 

hydroxyl (3401 cm
−1

) and ether groups (1052 
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cm
−1

). The 13C-NMR spectrum showed 28 

carbons signals (Table 1), which could be 

classified with the help of HSQC data as six 

Me, seven CH2, and eleven CH groups (two 

oxygenated), and four Cq -atoms. The presence 

of two disubstituted olefins (δ 130.78 (C-7), 

132.33 (C-23), 135.41 (C-6), 135.19 (C-22)), 

indicating that the sterol fragment of 

compound 1 is an ergosterol derivative. 

Besides, two oxygenated quaternary carbons of 

δ 82.15 (C-5) and 79.42 (C-8) suggested the 

presence of a peroxide structure.  

The signals at δH 6.22 and 6.51 (d, J = 

8 Hz, 2H, H-6, H-7) in the 
1
H-NMR spectrum 

revealed the presence of a disubstituted double 

bond which were correlated with carbon 

signals of 135.41 (C-6) and 130.78 (C-7) in the 

HMBC spectrum. The 
1
H-NMR showed also 

signals for six methyl groups, two singlets at 

0.81 and 0.83, and four doublets at 0.84 (J = 

6.8 Hz), 0.87 (J = 6.6 Hz), 0.93 (J = 6.8 Hz) 

and 1.17 (J = 6.7 Hz). Moreover, a multiplet at 

3.95, characteristic of a steroid oxymethine 

signal located at C-3, was observed. The 2D-

NMR experiments confirmed that compound 1 

is a steroid, containing a peroxy function at C-

5/C-8 and two double bonds in the side chain 

and at C-6/C-7. 

In the HMBC correlations (Figure 2), 

these three methylene proton signals were 

correlated to the methine carbon signal at δC 

66.84 (C-3), and the methylene carbon signal 

at δC 35.06 (C-1) was correlated with the 

methyl proton signal at δH 0.89 (H-19). The 

methylene proton signals at δH 1.94 and 2.11 

(H-4) were clearly correlated to two carbon 

signals at δC 83.10 (C-5) and 135.80 (C-6) in 

5α,8α-epidioxy system. The methyl proton 

signal at δH 0.89 (H-19) was long-range-

correlated to the methyne carbon signal at δC 

83.10 (C-5) to which the proton signals at δH 

1.94 and 2.11 (H-4) were correlated, but not to 

the signal at δC 79.82 (C-8). The methyl proton 

signal was also correlated to the methine 

carbon signal at δC 51.43 (C-9), but not to the 

signal at 52.05 (C-14) which correlated with 

the methyl proton signal at δH 0.83 (H-18). 

Also an olefinic proton signal in 5α,8α-

epidioxy system at (5 6.25 (H-7) was 

correlated to the carbon signals at δC 51.43 (C-

9) and 52.05 (C- 14), while the other olefinic 

proton signal at δH 6.51 (H- 6) was correlated 

to carbon signals at δC 37.29 (C-4) and 37.33 

(C-10). Therefore, the structure of ergosterol 

peroxide (5,8-epidioxy-5 ,8 -ergosta-6,22E-

dien-3 -ol) was thus elucidated to be 1. In this 

paper ergosterol peroxide was isolated from A. 

simplicifolia first time, so it is a new 

compound for this species. The known 

compounds stigmasterol (2), were confirmed 

by comparison and biogenetic analysis of these 

compounds with values reported by Cayme & 

Ragasa (2004). 

 

 

 

 

 

 

 

 
 

 

 

Figure 2. The long-range correlations of ergosterol 

peroxide through three bond connections observed 

in HMBC. All proton signals were correlated to 

carbon signals through two bond connections 

except H-3, H-16 and H-17. The arrow indicates the 

correlation from proton to carbon. 

 

Cytotoxic Activity 

The cytotoxic effects of compounds 1 

and 2 against HeLa cervical cancer cells were 

conducted according to the resazurin assay 

method (Sittampalam et al., 2004) and were 

used cisplatin (IC50 0.67 µM) as a positive 

control. As shown in Figure 3, treatment with 

both compounds resulted in the dose-

dependent inhibition of HeLa cervical cancer 

cell growth when assessed at 24 hours post-

treatment. Higher concentrations of both 

compounds were required to inhibit cell 

growth.  

Ergosterol peroxide (1) has a much 

stronger activity with an IC50 value of 0.80 µM 

compared to stigmasterol (2) which has an IC50 

value of 26.42 µM. This shows that the value 

of cytotoxic activity against HeLa cervical 

cancer cells is influenced by the presence of 

peroxide groups bound to C-5 and C-8. In fact, 

the ergosterol peroxide compound from the 

stem bark of Aglaia simplicifolia is much 

stronger to inhibit the growth of cervical 

cancer cells HeLa than those isolated from 

marine fungus Phoma sp with an IC50 value of 

29.20 µM (Wu et al., 2018).  

Ergosterol peroxide was sensitive to 

cancer cells, while less sensitive or nontoxic to 

normal cells. Wu et al., (2018) isolated 

HO
O

O4 6
75

8
9
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ergosterol peroxide from marine fungus Phoma 

sp. The bioassay results demonstrated that 

ergosterol peroxide reduced the viability of 

various cancer cells. EP induced caspase-

dependent apoptosis through mitochondrial 

damage, induced ROS generation and 

apoptosis, and reduced the LPS/ATP induced 

proliferation and migration of A549 cells 

through attenuated NLRP3 inflammasome 

activity. 
 

 
 

Figure 3. Effects of 24 h treatment various 

concentrations of compound 1 and 2 to HeLa 

cervical cancer cell (CPI: cell proliferation 

inhibition) 

 

 

4. CONCLUSIONS 
Two steroid compounds, ergosterol 

peroxide (1) and stigmasterol (2) have been 

isolated from the stembark of Aglaia 

simplicifolia and were shown for the first time 

in this species. The presence of peroxide in 

steroid structure plays an important role in 

cytotoxic activity against HeLa cervical cancer 

cells. 
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