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ABSTRACT  

 

The abstract is a synopsis of the work containing the problems 

studied, research purpose, information, and methods used to solve 

problems and conclusions. Articles must be submitted in print-ready 

format and are limited to a minimum of ten (10) pages and a 

maximum of twelve (12) pages. Abstract is a synopsis of the work 

that contains the issues studied, the research purpose, the 

information and methods used to solve the problem, and the 

research conclusion. Abstracts are limited to 200 words and should 

not contain references, mathematical equations, figures, and tables. 

The font size for abstracts, keywords, and an article body is 11pt. 

Keywords are no more than six (6) words, but the minimum is three 

(3) words. 
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ABSTRACT  

 

Logistic regression is a model commonly used for predicting data with 

large sample sizes. However, in real-world scenarios, many cases involve 

small datasets that need to be addressed using logistic regression. The aim 

of this research is to develop a hybrid logistic regression model to address 

issues with small sample sizes by combining the Newton Raphson and 

Super Cubic methods. This hybrid model is applied to predict student 

dropout at Universitas Duta Bangsa Surakarta. The performance of the 

hybrid model is evaluated using two main metrics: the convergence of the 

parameter approximation to measure the precision of parameter 

estimation, and the ROC curve to assess prediction accuracy. 

Experimental results show that the Hybrid Logistic Super Newton model 

outperforms the logistic regression Newton Raphson model, requiring 

only three iterations to converge, thus improving computational 

efficiency. Moreover, this model achieves higher accuracy, with an AUC 

of 0.8833. These findings suggest that the developed model has the 

potential to be applied in various fields, such as healthcare, finance, and 

others, offering an effective solution for accurate, real-time predictive 

analytics. Further research could focus on optimizing the model’s 

computational efficiency and exploring its application in other domains 

with small dataset challenges, such as healthcare and finance. 

 

Keywords : logistic regression; newton raphson; super cubic; small 

sample size data; prediction model. 
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1. INTRODUCTION 

Logistic regression is a non-linear model 

based on independent variables with categorical 

or numerical attributes that is used to model 

binary dependent variables. Besides that, each 

independent variable is non-linear. Several 

assumptions need to be considered while using 

logistic regression. This includes the binary 

dependent variable, observations that are 

independent of each other and a large sample 

size [1]. In real-world scenarios, it is common 

to encounter cases with small datasets that need 

to be addressed using logistic regression. 

According to Hosmer et al. [1] and Abu Zohair 

[2], in the prediction model, small sample 

problems can make the data-driven model 

unable to achieve better performance and 

accuracy. Fong et al. [3] proposed fine-tuning 

the prediction model parameters as a potential 

solution to this issue.  

Research on estimating logistic 

regression parameters typically uses Maximum 

Likelihood [1], [4], [5]. Maximum Likelihood 

measures are parameter estimation methods 

commonly applied to linear models, whereas 

logistic regression is inherently a non-linear 

model. When this parameter estimation method 

is applied to a non-linear model, the solution 

system becomes challenging to derive 

algebraically [6]. To address this challenge and 

obtain an accurate solution, iterative methods 

are commonly employed. The Newton Raphson 

method is an efficient iterative technique for 

finding the roots of non-linear equations, 

requiring relatively few iterations [7]–[11]. It 

has been widely used in research for logistic 

regression parameter estimation due to its 

ability to converge quickly to an optimal 

solution [12]. However, the Newton Raphson 

method faces a significant drawback: it relies on 

accurately identifying the differential of the 

calculated function, which can be difficult in 

complex scenarios. This limitation can lead to 

challenges in estimating parameter values and 

determining root values effectively [13], [14]. 

The super cubic proposed by Darvishi & 

Barati [15] is a method used to solve non-linear 

equations based on the Adomian decomposition 

(AD) method. The AD method has the 

advantage of being able to solve complex 

differential problems [15]–[21]. To overcome 

the difficulties in Newton Raphson, this study 

will modify Newton Raphson with Super Cubic 

to determine the parameters of a Logistic 

Regression model. The combination of newton 

raphson with super cubic is expected to have 

high performance for estimating the parameters 

of the logistic regression model. 

The objective of this research is to 

develop a new hybrid model by combining the 

basic Logistic Regression model with Newton 

Raphson with Super Cubic methods. This 

hybrid model will be applied to dropout data 

from students of Universitas Duta Bangsa 

Surakarta, which has the characteristics of a 

small dataset, to evaluate its performance. The 

accuracy of the proposed model will be assessed 

based on two criteria: the convergence of the 

approximation to evaluate the precision of 

parameter estimation [22], and the ROC curve 

to assess the accuracy of the prediction model 

[23], [24]. In the results, the levels of precision 

of the new model and the previous model 

(Regresi Logistic Newton Raphson) will be 

compared. 

 

2. METHODS 

The hybrid model is developed by 

combining logistic regression, Newton 

Raphson, and the super cubic method. 

Analytical evidence is presented in theoretical 

and numerical analysis. The prediction model 

development process is illustrated in 

Pseudocode 1 and 2. The stages of the Hybrid 

Logistic Super Newton model can be seen in 

Figure 1. 
 
Pseudocode 1: Logistic Super Newton Model 
1 : INPUT: Pre-processed data training, Pre-processed data testing 

2 : OUTPUT: Best Prediction 
3 : ALGORITHM: 
4 :  Set i ← 1 

5 :  While i ≤ length of data training do 
6 :  Set φ(x)_i ← Training data instance 
7 :  m ← length of independent variable 

8 :  l(α) ← Compute log-likelihood (x_im) 
9 :  W(α) ← Compute Gradient (l(α)) 

10:  Z(α) ← Compute Hessian (W(α)) 
11:  α ← Compute Estimation Parameter (W(α), Z(α)) 
12:  i ← i + 1 

13: END WHILE 
14: (Call Pseudocode 2) 
  

Pseudocode 2: Parameter estimation  
1:  INPUT: α_0 = initial guess of α; ε = tolerance error; t = iteration 

2:  OUTPUT: α_(t+1) 
3:  ALGORITHM: 
4:  Set t ← 0 

5: While ‖α_(t+1) - α_t‖ > ε do 
6:  β_t ← Compute Newton Raphson’s (α_t) 
7:  γ_t ← Compute Super Cubic (β_t, α_t) 

8:  α_(t+1) ← Compute Super Newton (γ_t) 
9:   t ← t + 1 
10: END WHILE 

 
11: Set i ← 1 

12: While i ≤ length of testing data do 
13:  φ(x)_i ← Compute sigmoid (y_i) 
14:  If φ(x)_i ≥ 0.5 then 

15:  y_i ← 1 
16:  Else 
17:  y_i ← 0 

18:  i ← i + 1 
19: END WHILE 
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Figure 1. Stages of hybrid logistic super newton model 

The data used in this research consists of 

329 students, including those who graduated 

and those who dropped out from Universitas 

Duta Bangsa Surakarta in 2023, with variables 

based on previous findings by Nurmalitasari 

[1], as shown in Table 1. MATLAB was chosen 

for implementation due to its efficiency in 

numerical computing, particularly for matrix 

operations and iterative methods, although the 

approach can also be adapted to other platforms 

such as Python or R. Data pre-processing 

included mean and mode imputation to handle 

missing values and outlier management using 

the interquartile range (IQR) method to ensure 

the quality and reliability of the dataset for 

accurate modelling. 

Table 1. The variables used in the research 

Variable Variable Construct Value 

Dropout Indicator 0 = Dropout 

1 = Graduate 

Cumulative Grade Point 

Average (CGPA) 

1 = 0.00 - 1.99 

2 = 2.00 - 2.75 

3 = 2.76 - 3.50 

4 = 3.51 - 4.00 

Individual Income 1 = No income 

2 = Less than IDR 1,000,000 

3 = IDR 1,000,001 - IDR 

2,000,000 

4 = IDR 2,000,001 - IDR 

5,000,000 

5 = IDR 5,000,001 - IDR 

20,000,000 

6 = More than IDR 20,000,000 

Parental Income 1 = No income 

2 = Less than IDR 1,000,000 

3 = IDR 1,000,001 - IDR 

2,000,000 

4 = IDR 2,000,001 - IDR 

5,000,000 

5 = IDR 5,000,001 - IDR 

20,000,000 

6 = More than IDR 20,000,000 

 

 

 

 

Table 1 continued… 
Variable Variable Construct Value 

Marital Status 1 = Single 

2 = Married 

3 = Divorced 

Student Employment 

Status 

1 = Studying while working 

2 = Studying without working 

Interest in Study 

Program 

1 = Very interested in the 

study program 

2 = Interested in the study 

program 

3 = Neutral about the study 

program 

4 = Not interested in the study 

program 

5 = Very disinterested in the 

study program 

Relationship with 

lecturers/supervisors 

1 = Very poor relationship 

2 = Poor relationship 

3 = Neutral relationship 

4 = Good relationship 

5 = Very good relationship 

Satisfaction with 

lecturer quality 

1 = Very dissatisfied 

2 = Dissatisfied 

3 = Neutral 

4 = Satisfied 

5 = Very satisfied 

 

2.1.  Logistic Regression 

Logistic regression with parameter 𝛼 =
(𝛼0, 𝛼1, … , 𝛼𝑀)

𝑇 with 𝑥𝑖0 = 1 is provided by 

𝜑𝑖(𝑥) =
𝑒∑ 𝛼𝑚𝑥𝑖𝑚

𝑀
𝑚=0

1 + 𝑒∑ 𝛼𝑚𝑥𝑖𝑚
𝑀
𝑚=0

                               (1) 

The logit transformation of 𝜑𝑖(𝑥) is given by 

𝑙𝑜𝑔𝑖𝑡(𝜑𝑖(𝑥)) = 𝑙𝑛 (
𝜑𝑖(𝑥)

1 − 𝜑𝑖(𝑥)
)                   (2) 

Equations (1) and (2) can be formulated 

𝑙𝑜𝑔𝑖𝑡(𝜑𝑖(𝑥)) = 𝑋
𝑇𝛼 

𝑋 is a matrix where each row corresponds 

to an observation, and each column corresponds 

to a predictor variable (including the intercept). 

For 𝑖-th observation, 𝑥𝑖 is the row vector 

representing the values of the independent 

variables. The transpose 𝑋𝑇changes the rows of 

𝑋 into columns. If a sample of S-independent 

observation {(𝑦𝑖, 𝑥𝑖)}𝑖=1,2,…,𝑆 ∈ [{0,1} ×

𝑅𝑀+1]𝑆 where 𝑦𝑖 a represents a binary outcome, 

and 𝑥𝑖 is the number of independent variables 

for the 𝑖𝑡ℎ subject. The likelihood function 

𝐿(𝛼)is defined as 

𝑳(𝜶) =∏𝝋𝒊(𝒙)
𝒚𝒊

𝑺

𝒊=𝟏

(𝟏 − 𝝋𝒊(𝒙))
𝒔𝒊−𝒚𝒊

         (3) 

 

 

https://doi.org/10.15408/jti.v18i1.43929


Jurnal Teknik Informatika Vol. 18 No. 1, April 2025 (22-31)  
ISSN: p-ISSN 1979-9160 (Print)| e-ISSN 2549-7901 (Online)   
DOI: https://doi.org/10.15408/jti.v18i1.43929 
  

25 
Nurmalitasari et al, Hybrid Logistic Super Newton… 

Equation (1) is substituted into Equation (3), it 

forms 

𝑳(𝜶) =∏𝒆𝒚𝒊∑ 𝜶𝒎𝒙𝒊𝒎
𝑴
𝒎=𝟎

𝑺

𝒊=𝟏

(𝟏

+ 𝒆∑ 𝜶𝒎𝒙𝒊𝒎
𝑴
𝒎=𝟎 )

−𝒔𝒊
        (4) 

The function of log-likelihood (𝑙(𝛼))  derived 

from equation (4) can be expressed as follows: 

𝒍(𝜶) = ∑[(𝒚𝒊 ∑ 𝜶𝒎𝒙𝒊𝒎

𝑴

𝒎=𝟎

)

𝑺

𝒊=𝟏

− 𝒔𝒊 𝒍𝒐𝒈 (𝟏

+ 𝒆∑ 𝜶𝒎𝒙𝒊𝒎
𝑴
𝒎=𝟎 )] .          (5) 

Equation (5) is also called the cos function. The 

critical point of the log-likelihood function can 

be determined by taking its derivative with 

respect to the parameter and setting it equal to 

zero. 

𝝏𝒍(𝜶)

𝝏𝜶𝒎
=∑[(𝒚𝒊𝒙𝒊𝒎) − 𝒔𝒊𝝋𝒊(𝒙)𝒙𝒊𝒎]

𝑺

𝒊=𝟏

= 𝟎                                   (6) 

Equation (6) can be rewritten in matrix form as 

follows: 

𝑾(𝜶) = 𝒍′(𝜶) = 𝑿𝑻𝜶, 
where 𝑙′(𝛼) is a column vector of length 

𝑀 + 1 whose elements are 
𝜕𝑙(𝛼)

𝜕𝛼𝑚
, 𝑚 =

0, 1, … ,𝑀, likewise 𝜌 is a column vector of 

length 𝑆 with elements 𝜌𝑖 =
(𝑠1𝜑1, 𝑠2𝜑2, … , 𝑠𝑆𝜑𝑆)

𝑇 and 𝑋𝑇  is a (𝑀 + 1) ×
𝑆 matrix. Parameter α can be found using 

Maximum Likelihood by setting each of the 

𝑀 + 1 equations in (6) equal to zero and solving 

for each 𝛼𝑚. Equation (6) is also called the 

gradient function. The general from of matrix of 

second partial derivatives is: 

𝝏𝟐𝒍(𝜶)

𝝏𝜶𝒎𝝏𝜶𝒎′
= −∑𝒔𝒊𝝋𝒊(𝒙)𝒙𝒊𝒎(𝟏

𝑵

𝒊=𝟏

−𝝋𝒊(𝒙))𝒙𝒊𝒎′ ,               (7) 

with 𝑚 = 0,1,2,… ,𝑀 dan 𝑚′ =
0,1,2,… ,𝑀. Equation (7) can be expressed in 

term of matrix multiplication Z. 

𝒁(𝜶) = −𝑿𝑻𝑫𝑿. 

The Hessian matrix, denoted as 𝑍(𝛼), 
includes D, an 𝑆 × 𝑆 diagonal matrix. By setting 

equation (6) equal to zero, we obtain a system 

of 𝑀 + 1  non-linear equations with 𝑀 + 1 

unknown variables. Solving this system yields 

a vector containing elements 𝛼𝑚. After 

confirming that the matrix of second-order 

partial derivatives is negative definite, ensuring 

that the solution represents a global maximum 

rather than a local one, it can conclude that this 

vector provides the parameter estimates that 

maximize the likelihood of the observed data. 

 

2.2.  Newton Raphson 

The Newton Raphson method solves 

non-linear equations using a single starting 

point approach and approaches it by paying 

attention to the slope or gradient. Consider the 

system of non-linear equations 𝑊(𝛼) = 0 for 

solving the system, if an initial guess 𝛼(0) is 

computed from the observed data, then 

𝜶𝒕+𝟏 = 𝜶𝒕 −
𝑾(𝜶𝒕)

[𝒁(𝜶𝒕)]
             (8) 

Here 𝑊′(𝛼𝑡) refers to the derivative 

𝑊(𝛼𝑡). Equation (8) is called the Newton 

Raphson formula for solving a system of 

nonlinear equations of the from 𝑊(𝛼𝑡) = 0. An 

initial guess for the root is computed to solve 

such a system using (8). Assume that 𝛼0 is that 

guess. The next value 𝛼1 will be determined. 

This iterative process will continue until the 

desirable root is obtained; it is with ‖𝛼𝑡+1 −
𝛼𝑡‖ < 𝜀 for some specific value 𝜀, 𝑡 = 0, 1,…. 

The Newton Raphson method has the advantage 

is faster convergence in determining the roots of 

the non-linear equation.  
 

2.3.  Super Cubic 

Darvishi & Barati [15] present super 

cubic convergence methods to solve systems of 

non-linear equations. The super cubic method is 

based on Adomian decomposition method 

Newton. The iteration scheme of the super 

cubic is as follows: 

𝜶𝒕+𝟏 = 𝜶𝒕 −
𝑾(𝜶𝒕)

𝒁(𝜶𝒕)
−
𝑾(𝜷𝒕)

𝒁(𝜷𝒕)
              (9) 

with  

𝜷𝒕 = 𝜶𝒕 −
𝑾(𝜶𝒕)

𝒁(𝜶𝒕)
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2.4.  The Proposed Model 

The Newton-Raphson method is an 

iterative method that converges quadratically. 

In this study, modifying the Newton Raphson 

algorithm with the super cubic proposed by 

Darvishi & Barati [15] is suggested to improve 

convergence in determining logistic regression 

parameters. 

A three-step iterative method is 

employed to estimate logistic regression 

parameters from Newton Raphson’s equation 

(8) and super cubic equation (9). Our proposed 

formula can be seen in equation (10). 

{
 
 
 
 

 
 
 
 𝜷𝒕 = 𝜶𝒕 −

𝑾(𝜶𝒕)

𝒁(𝜶𝒕)

𝜸𝒕 = 𝜶𝒕 −
𝑾(𝜶𝒕)

𝒁(𝜶𝒕)
−
𝑾(𝜷𝒕)

𝒁(𝜷𝒕)

𝜶𝒕+𝟏 = 𝜸𝒕 −
𝑾(𝜸𝒕)

𝒁(𝜸𝒕)
−
𝑾(𝜸𝒕 −

𝑾(𝜸𝒕)
𝒁(𝜸𝒕)

)

𝒁 (𝜸𝒕 −
𝑾(𝜸𝒕)
𝒁(𝜸𝒕)

)

(10) 

Where 𝛼𝑡 = (𝛼1𝑡 , 𝛼2𝑡 , … , 𝛼𝑚𝑡)
𝑇, 𝛽𝑡 =

(𝛽1𝑡 , 𝛽2𝑡 , … , 𝛽𝑚𝑡)
𝑇, 𝛾𝑡 = (𝛾1𝑡 , 𝛾2𝑡, … , 𝛾𝑚𝑡)

𝑇, 

𝑍(𝛾𝑡) is Jacobian matrix. As a result,  

𝒁(𝜶) =

(

 
 
 
 

𝝏𝑾𝟏

𝝏𝜶𝟏
,
𝝏𝑾𝟏

𝝏𝜶𝟐
, … ,

𝝏𝑾𝟏

𝝏𝜶𝒎
 

𝝏𝑾𝟐

𝝏𝜶𝟏
,
𝝏𝑾𝟐

𝝏𝜶𝟐
, … ,

𝝏𝑾𝟐

𝝏𝜶𝒎…
𝝏𝑾𝒎

𝝏𝜶𝟏
,
𝝏𝑾𝒎

𝝏𝜶𝟐
, … ,

𝝏𝑾𝒎

𝝏𝜶𝒎)

 
 
 
 

 

This proves that the method defined by 

(10) has ninth-order convergence. This 

combination of the Newton Raphson and Super 

Cubic methods is used to estimate the 

parameters of logistic regression. The proposed 

new model is named the Logistic Super Newton 

model. 

The evaluation of the proposed model's 

accuracy will be based on two factors: the 

convergence of the approximation to measure 

the precision of parameter estimation [22], and 

the ROC curve to evaluate the prediction 

model's accuracy [23], [24]. The results will 

compare the precision levels of the new model 

with those of the previous model (Newton 

Raphson Logistic Regression). 

 

 

 

3. RESULTS AND DISCUSSION 

 

3.1.  Result 

The first step in constructing the hybrid 

logistic Super Newton model is to theoretically 

prove that equation (10) has a local order of 

convergence of at least nine, as demonstrated by 

the following error equation. 

Theorem 1. The iterative method (10) has local 

order of convergence at least nine with the 

following error equation 

𝛾𝑡 −
𝑊(𝛾𝑡)

𝑍(𝛾𝑡)
−
𝑊 (𝛾𝑡 −

𝑊(𝛾𝑡)
𝑍(𝛾𝑡)

)

𝑍 (𝛾𝑡 −
𝑊(𝛾𝑡)
𝑍(𝛾𝑡)

)

= θ + 16𝑒2
8𝜀𝑡
9

+ 𝑜(‖𝜀𝑡
10‖)                         (11) 

 

Proof: let θ be a simple zero of 𝑍. As 𝑍 is a 

sufficiently differentiable function, by 

expanding 𝑊(𝛼𝑡) and 𝑍(𝛼𝑡) about θ, it is 

shown that 

𝑊(𝛼𝑡)

= 𝑍(𝜃)[𝜀𝑡 + 𝑒2𝜀𝑡
2 + 𝑒3𝜀𝑡

3 + 𝑒4𝜀𝑡
4 + 𝑒5𝜀𝑡

5

+ 𝑒6𝜀𝑡
6 + 𝑒7𝜀𝑡

7 + 𝑒8𝜀𝑡
8]

+ 𝑜(‖𝜀𝑡
9‖)                                                       (12) 

𝑍(𝛼𝑡)

= 𝑍(𝜃)[1 + 𝑒2𝜀𝑡
1 + 𝑒3𝜀𝑡

2 + 𝑒4𝜀𝑡
3 + 𝑒5𝜀𝑡

4

+ 𝑒6𝜀𝑡
5 + 𝑒7𝜀𝑡

6 + 𝑒8𝜀𝑡
7]

+ 𝑜(‖𝜀𝑡
8‖)                                                       (13) 

Where 𝑒𝑡 = (
1
𝑡!⁄ )

𝑊𝑡(𝜃)

𝑍(𝜃)
, 𝑡 = 2,3,… and 

𝜀𝑡 = 𝛼𝑡 − 𝜃. The square brackets are 

polynomials in terms of εt. Equations 12 and 

13 can be used to calculate the following 

equation. 

𝛾𝑡 = 𝜃 + 2𝑒2
2𝜀𝑡

2 + (7𝑒2𝑒3 − 9𝑒2
3)𝜀𝑡

4

+ (6𝑒3
2 − 44𝑒3𝑒2

2 + 10𝑒2𝑒4
+ 30𝑒2

4)𝜀𝑡
5

+ (17𝑒3𝑒4 − 62𝑒4𝑒2
2 + 188𝑒3𝑒2

3

− 88𝑒2
5 − 70𝑒2𝑒3

2)𝜀𝑡
6

+ 𝑜(‖𝜀𝑡
7‖)                                 (14) 

𝑊(𝛾𝑡)

𝑍(𝛾𝑡)
= 2𝑒2

2𝜀𝑡
3 + (7𝑒2𝑒3 − 9𝑒2

3)𝜀𝑡
4

+ (6𝑒3
2 − 44𝑒3𝑒2

2 + 10𝑒2𝑒4
+ 30𝑒2

4)𝜀𝑡
5

+ (17𝑒3𝑒4 − 92𝑒2
5 − 62𝑒4𝑒2

2

+ 188𝑒3𝑒2
3 − 70𝑒2𝑒3

2)𝜀𝑡
6

+ 𝑜(‖𝜀𝑡
7‖)                               (15) 
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𝛾𝑡 −
𝑊(𝛾𝑡)

𝑍(𝛾𝑡)
= 𝜃 + 4𝑒2

5𝜀𝑡
6 + (28𝑒3𝑒2

4 − 36𝑒2
6)𝜀𝑡

7

+  𝑜(‖𝜀𝑡
8‖)                             (16) 

With (16), it can be seen that 

𝑊(𝛾𝑡 −
𝑊(𝛾𝑡)

𝑍(𝛾𝑡)
) = 4𝑒2

5𝜀𝑡
6 + (28𝑒3𝑒2

4 − 36𝑒2
6)𝜀𝑡

7

+  𝑜(‖𝜀𝑡
8‖)                            (17)  

From (14), (16), and (17) it is concluded that 

𝛾𝑡 −
𝑊(𝛾𝑡)

𝑍(𝛾𝑡)
−
𝑊 (𝛾𝑡 −

𝑊(𝛾𝑡)
𝑍(𝛾𝑡)

)

𝑍 (𝛾𝑡 −
𝑊(𝛾𝑡)
𝑍(𝛾𝑡)

)

= 𝜃 + 16𝑒2
8𝜀𝑡
9 + 𝑜(‖𝜀𝑡

10‖) 

This shows the ninth-order convergence 

of the method. Hence, the Proof is completed. 

The next step is to validate the new model 

through numerical analysis. This validation is 

conducted using Pseudocode 1.a and 1.b, 

applied to a small dataset of student dropouts 

from Universitas Duta Bangsa Surakarta. Using 

an initial guess of 𝛼0 = −1𝑒 − 5, with 

𝐼𝑡𝑒𝑟𝑚𝑎𝑥 = 150000 and 𝜀 = 1𝑒 − 5, using 

MATLAB version R2021a software, as shown 

in Figure 2. 

 

Figure 2. The parameter estimation results 

The parameter values from Figure 1 are 

used to make predictions, and the results are 

presented in Figure 3 below. 

 

Figure 3. Prediction results using hybrid logistics super 

newton  

Figure 3 illustrates the results of dropout 

predictions using the Logistics Super Newton 

model compared to actual data testing. From the 

Figure 3, it can be seen that there are seven 

different prediction results from 83 testing data. 

This means that 91.57% of the Hybrid Logistics 

Super Newton model prediction results are 

correct. This can be interpreted that the Logistic 

Super Newton model can be used to predict 

dropout students in a small sample size [25]. 

Assessing the accuracy of the prediction 

model is crucial because the accuracy of the 

model will determine the quality of the 

predictions produced. There are two 

benchmarks for determining the prediction 

accuracy of the Hybrid Logistic Super Newton 

model. First, the convergence of the 

approximation is used to evaluate the precision 

of the parameter estimation. Using initial guess 

α0 = −1e − 5, with Itermax = 150000 and 

error value ε = 1e − 5. The results of the 

analysis can be seen in Figure 4. 

 

Figure 4. Convergence of the approximation of the logistic 

super newton versus logistic regression newton-raphson 

According to Figure 4, the Hybrid Logistic 

Super Newton model has a higher convergence 

rate than the logistic regression newton 

Raphson model. This is evident from the 

number of parameter-finding iterations. The 

Hybrid Logistic Super Newton model, requires 

only three iterations to determine the actual 

parameters, whereas the Logistic Regression 

Newton Raphson model required eight 

iterations. This suggests that the propose model 

has a higher convergence rate than its 

predecessor. 

Second, the Receiver Operating 

Characteristics (ROC) curve is used to assess 

the accuracy of the prediction model. 
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Figure 5. ROC of the logistic super newton model 

 

 

Figure 6. ROC of the logistic regression newton raphson 

The ROC curves in Figures 5 and 6 

compare the performance of two models: the 

Hybrid Logistic Super Newton and the Logistic 

Regression Newton Raphson. The Hybrid 

Logistic Super Newton model achieves an Area 

Under the Curve (AUC) of 0.8833, 

demonstrating slightly better predictive 

accuracy than the Logistic Regression Newton 

Raphson model, which has an AUC of 0.8815. 

Both curves are well above the diagonal 

reference line, indicating strong classification 

performance for both models. The slightly 

better performance of the Hybrid Logistic Super 

Newton model can be attributed to the 

integration of the Super Cubic method with the 

Newton-Raphson approach. This study 

leverages the strengths of the Super Cubic 

method to address the limitations of the 

Newton-Raphson method, particularly its 

reliance on accurately determining the 

differential of the calculated function, which 

can be challenging for non-linear models. By 

incorporating the Super Cubic method into the 

Newton-Raphson framework, the hybrid model 

achieves more precise and stable parameter 

estimation, even for small datasets. This hybrid 

approach enhances the efficiency and accuracy 

of the iterative process, enabling the model to 

better capture the relationships between 

predictors and outcomes. As a result, the Hybrid 

Logistic Super Newton model demonstrates 

improved classification performance and 

predictive accuracy, making it a robust solution 

for logistic regression models with small 

sample sizes. 

 

3.2.  Discussion 

The experimental results demonstrate the 

superiority of the new model, the Hybrid 

Logistic Super Newton, compared to the older 

model, the Logistic Regression Newton 

Raphson. The faster convergence of the Hybrid 

Logistic Super Newton model indicates its 

efficiency in solving nonlinear equations with 

fewer iterations. In numerical methods, a faster 

convergence rate is a key indicator of an 

effective algorithm, as it reduces computational 

time without compromising accuracy [26]–

[29]. This characteristic is particularly crucial 

for real-time prediction systems, where fast 

processing is essential to provide reliable and 

timely results [30]–[32]. 

The ROC curves in Figures 4 and 5 

further reinforce the superior performance of 

the Logistic Super Newton model. With an 

AUC of 0.8833, the new model slightly 

outperforms the Logistic Regression Newton 

Raphson model, which has an AUC of 0.8815. 

Both models exhibit strong classification 

capabilities, as evidenced by their curves being 

significantly above the diagonal reference line. 

However, the higher AUC of the Logistic Super 

Newton model highlights its better predictive 

accuracy, solidifying its role as a more robust 

and effective logistic regression model. This 

improvement is particularly beneficial for 

datasets requiring high precision in 

classification tasks  [24]. One of the main 

advantages of using ROC curves in this analysis 

is their ability to evaluate model performance at 

all possible prediction thresholds rather than 

relying solely on average accuracy. This 

comprehensive evaluation method enables a 

deeper understanding of the trade-offs between 

sensitivity and specificity for each model. 

The findings indicate that the Hybrid 

Logistic Super Newton approach not only 

enhances prediction accuracy but also improves 

system performance by enabling faster analysis 

and more efficient delivery of predictive 

information. These results strongly support the 
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practical implementation of the Hybrid Logistic 

Super Newton model in predictive systems, 

where both speed and accuracy are critically 

important. 

While the Hybrid Logistic Super Newton 

model demonstrates clear advantages in terms 

of convergence speed and predictive accuracy, 

there are certain limitations that must be 

addressed. One significant challenge lies in 

scaling the model to larger datasets, where the 

computational demands may increase 

substantially due to the iterative nature of the 

Newton-Raphson and Super Cubic methods. 

While the current implementation is efficient 

for small datasets, the complexity of the hybrid 

approach may require optimization or parallel 

computing techniques to maintain its efficiency 

in larger datasets or high-dimensional data 

scenarios. Additionally, adapting the model to 

other domains with vastly different data 

characteristics, such as unbalanced datasets or 

those with categorical variables, may 

necessitate further modifications to ensure its 

robustness and generalizability. Despite these 

challenges, the broader implications of the 

model are promising, as it provides a pathway 

for developing real-time predictive systems in 

fields such as healthcare, finance, and 

education. Future research should focus on 

refining the model's computational framework, 

exploring domain-specific adaptations, and 

investigating its integration with advanced pre-

processing techniques or alternative 

optimization algorithms to enhance its 

applicability across a wider range of predictive 

problems. 

 

CONCLUSION 

 

This research successfully developed a 

new hybrid model that combines the Logistic 

Regression model with the Newton-Raphson 

and Super Cubic methods, applied to dropout 

data from students at Universitas Duta Bangsa 

Surakarta. The experimental results show that 

the Hybrid Logistic Super Newton model 

outperforms the Logistic Regression Newton 

Raphson model in terms of both convergence 

and prediction accuracy. Specifically, the 

hybrid model requires only three iterations to 

find accurate parameters, compared to eight 

iterations required by the previous model, 

demonstrating its higher computational 

efficiency in solving non-linear equations. 

Moreover, in terms of predictive accuracy, the 

hybrid model achieves an AUC of 0.8833, 

which is slightly higher than the AUC of the 

previous model (0.8815), indicating its 

improved ability to classify outcomes 

accurately. 

The Hybrid Logistic Super Newton 

model proves to be an effective solution for 

handling small sample datasets, addressing the 

challenges commonly faced by traditional 

logistic regression models in such scenarios. 

This model has the potential to be applied in 

various fields requiring accurate and efficient 

predictions, such as risk prediction systems in 

education, healthcare, and finance. Future 

research should focus on refining the hybrid 

approach to further enhance its computational 

efficiency and adaptability to small datasets. 

Exploring improvements in data processing 

techniques and model algorithms may also pave 

the way for more advanced and reliable 

predictive solutions tailored for small sample 

scenarios. 
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