
Jurnal Teknik Informatika Vol. 17 No. 2, Oktober 2024 (139-152)
ISSN: p-ISSN 1979-9160 (Print)| e-ISSN 2549-7901 (Online)
DOI: https://doi.org/10.15408/jti.v17i2.40453

Performance Analysis of Transfer Learning Models for

Identifying AI-Generated and Real Images

Arini1 , Muhamad Azhari2, Isnaieni Ijtima’ Amna Fitri3, Feri Fahrianto4

1,2,3,4Department of Informatics Engineering, Faculty of Science and Technology, State Islamic

University Syarif Hidayatullah Jakarta
1,2,3,4Jl.Ir H. Juanda Street Number 95, Ciputat, West Tangerang, Banten, Indonesia

Article:

Accepted: May 30, 2024

Revised: April 10, 2024

Issued: October 29, 2024

© Arini, et al (2024).

This is an open-access article

under the CC BY-SA license

*Correspondence Address:

ABSTRACT

The abstract is a synopsis of the work containing the problems

studied, research purpose, information, and methods used to solve

problems and conclusions. Articles must be submitted in print-ready

format and are limited to a minimum of ten (10) pages and a

maximum of twelve (12) pages. Abstract is a synopsis of the work

that contains the issues studied, the research purpose, the

information and methods used to solve the problem, and the

research conclusion. Abstracts are limited to 200 words and should

not contain references, mathematical equations, figures, and tables.

The font size for abstracts, keywords, and an article body is 11pt.

Keywords are no more than six (6) words, but the minimum is three

(3) words.

Keywords: Web, Asset Management, CodeIgniter, Bootstrap

ABSTRACT

This study aims to analyze and compare the performance of three transfer

learning methods, namely InceptionV3, VGG16, and DenseNet121, in

detecting AI-generated and real images. The background of this research

is the unknown performance of transfer learning methods for detecting

AI-generated and real images. This study introduces innovation by

conducting 54 experiments involving three types of transfer learning,

three dataset split ratios (60:40, 70:30, and 80:20), three optimizers

(Adam, SGD, and RMSprop), two numbers of epochs (20 and 50), and

the addition of dense and flatten layers during fine tuning. Performance

evaluation was conducted using binary cross entropy loss and confusion

matrix. This research provides significant benefits in determining the

most effective transfer learning model for detecting AI-generated and real

images and offers practical guidance for further development. The results

show that the InceptionV3 model with the Adam optimizer, an 80:20 split

ratio, and 20 epochs achieved the highest accuracy of 84.26%, with a loss

of 39.54%, precision of 81.33%, recall of 82.43%, and an F1-Score of

81.88%.

Keywords : AI generated image; deep learning, transfer learning;

inceptionV3; VGG16; DenseNet121;

JURNAL TEKNIK INFORMATIKA

Homepage : http://journal.uinjkt.ac.id/index.php/ti

feri.fahrianto@uinjkt.ac.id

https://doi.org/10.15408/jti.v17i2.40453
https://creativecommons.org/licenses/by-sa/4.0/
mailto:arini@uinjkt.ac.id
mailto:feri.fahrianto@uinjkt.ac.id

Jurnal Teknik Informatika Vol. 17 No. 2, Oktober 2024 (139-152)
ISSN: p-ISSN 1979-9160 (Print)| e-ISSN 2549-7901 (Online)
DOI: https://doi.org/10.15408/jti.v17i2.40453

140
Arini et al, Performance Analysis Of…

1. INTRODUCTION

The rapid advancement of artificial

intelligence (AI) has led to the proliferation of

AI-generated content, including images that are

often indistinguishable from real ones. This

raises significant challenges in various domains,

from digital forensics to social media platforms,

where the ability to distinguish between AI-

generated and real images is crucial [1]. As a

result, the application of machine learning

techniques, particularly Transfer Learning, has

become an essential area of research to address

these challenges [2].

Transfer Learning has proven effective in

scenarios where limited labeled data is

available, as it leverages pre-trained models to

transfer knowledge from one task to another [3].

In the context of image recognition, Transfer

Learning allows models to generalize from

previously learned features, making it highly

suitable for tasks such as detecting AI-generated

images [4]. Despite its potential, there is still a

gap in the literature regarding the comparative

performance of different Transfer Learning

models in this specific application [5].

This study aims to fill that gap by

evaluating and comparing the performance of

three widely used Transfer Learning models:

InceptionV3, VGG16, and DenseNet121. These

models have been selected for their proven

effectiveness in image classification tasks [6].

The choice of these models is motivated by their

distinct architectural features, which offer

varying strengths in handling image data,

particularly in complex scenarios like

distinguishing AI-generated images from real

ones [7].

InceptionV3, for example, is known for

its efficient use of computational resources and

its ability to maintain high accuracy even with

fewer parameters. On the other hand, VGG16's

depth allows it to capture more complex

features, while DenseNet121's dense

connectivity promotes richer feature

representations, reducing the risk of overfitting

[8]. By analyzing these models under different

conditions, this research seeks to identify the

most effective approach for this critical task.

The findings of this study will not only

contribute to the academic understanding of

Transfer Learning's application in AI-generated

image detection but also provide practical

insights for developing more robust image

recognition systems. This is particularly

relevant in an era where the line between real

and synthetic media is increasingly blurred, and

the need for reliable detection methods is more

urgent than ever.

2. METHODS

In reviewing the basic theory of the

methods to be used, the following is an

explanation of the related theories that will be

addressed in the development of several transfer

learning models and the analysis of their

performance.

2.1. Deep Learning

Deep learning is a branch of artificial

intelligence (AI) that leverages deep neural

networks to model and understand complex

data. This technology enables systems to

autonomously learn from large and intricate

datasets by hierarchically extracting high-level

features. Deep learning is renowned for its

ability to handle challenging tasks such as

image and voice recognition, natural language

processing, and solving problems that require

deep contextual understanding. Deep neural

networks allow for more abstract data

representation, facilitating machines to learn

and adapt with increasing levels of intelligence.

[9]

2.2. CNN

Convolutional Neural Networks (CNN)

are widely used in deep learning for tasks such

as image classification, segmentation, object

detection, video processing, natural language

processing, and voice recognition. CNNs

typically include convolutional layers, pooling

layers, fully connected layers, and non-linear

layers. They use kernel filters to extract

fundamental features from input images and

popular activation functions such as Sigmoid,

Tanh, ReLU, Leaky ReLU, Noisy ReLU, and

Parametric Linear Units. This architecture,

influenced by the visual cortex, mimics the

neural connections of the human brain.

Examples include LeNet, AlexNet, and

VGGNet. [10]

https://doi.org/10.15408/jti.v17i2.40453

Jurnal Teknik Informatika Vol. 17 No. 2, Oktober 2024 (139-152)
ISSN: p-ISSN 1979-9160 (Print)| e-ISSN 2549-7901 (Online)
DOI: https://doi.org/10.15408/jti.v17i2.40453

141
Arini et al, Performance Analysis Of…

2.3. Transfer Learning

Transfer Learning (TL) aims to enhance

the understanding of the current task by linking

it to related source domain tasks. TL improves

learning by associating previous tasks with the

target task, providing faster and better solutions.

TL facilitates efficient learning and

communication between the source tasks and

the target task. However, it can lead to negative

transfer if the testing and training samples are

incorrectly transferred, thus reducing the

performance of the target task. [11]

2.4. Inception V3

Inception V3 is a deep learning technique

for classification. Its advantage lies in the

complexity of its network structure, which

includes input, output, and classification stages.

The process involves extraction and various

hidden layers such as convolution, pooling,

activation (ReLU), softmax, and fully

connected layers. With its structured approach,

Inception V3 efficiently organizes object

information by using convolutional outputs for

the next convolutional step. [12]

Figure 1. Arsitektur inceptionV3

2.5. DenseNet121

DenseNet121 is a unique Convolutional

Neural Network (CNN) architecture with dense

inter-layer connections. Unlike traditional

CNNs, each layer in DenseNet121 is connected

not only to its neighboring layers but also to

every preceding layer. This dense connectivity

improves information flow throughout the

network, promotes richer feature

representations, and efficiently reduces the risk

of overfitting by utilizing outputs from previous

layers as inputs.[13]

Figure 2. Arsitektur DenseNet121

2.6. VGG16

VGG16 is a Deep Convolutional Neural

Network (DCNN) model proposed by

Simonyan and Zisserman. The model achieved

a top-5 test accuracy of 92.7% on the ImageNet

dataset and won the Large-Scale Visual

Recognition Challenge (ILSVRC) held by the

Oxford Visual Geometry Group. The increased

depth in the VGG model helps the kernels learn

more complex features. In research on the

effectiveness of transfer learning, the pre-

trained and fine-tuned VGG16 achieves

significantly higher accuracy compared to

networks trained from scratch.[14]

Figure 3. Arsitektur VGG16

2.7. Evaluation Method

2.7.1. Binary Cross Entropy

Binary cross entropy is a loss function

used in binary classification [15]. The

calculation of binary cross entropy can be done

using the following formula:

𝑳 = −
𝟏

𝒎 × 𝒏
[∑ ∑ (𝒚𝒊𝒋𝒍𝒐𝒈(𝒑𝒊𝒋) + (𝟏 − 𝒚𝒊𝒋)𝐥𝐨𝐠 (𝟏 − 𝒑𝒊𝒋))

𝒏

𝒋=𝟏

𝒎

𝒊=𝟏

]

(1)

https://doi.org/10.15408/jti.v17i2.40453

Jurnal Teknik Informatika Vol. 17 No. 2, Oktober 2024 (139-152)
ISSN: p-ISSN 1979-9160 (Print)| e-ISSN 2549-7901 (Online)
DOI: https://doi.org/10.15408/jti.v17i2.40453

142
Arini et al, Performance Analysis Of…

2.7.2. Confusion Matrix

The confusion matrix is a widely used tool

in machine learning to assess the performance of

a classifier on a dataset where the true labels are

known. This tool helps clarify basic performance

metrics in binary classification, including true

positives, false positives, true negatives, and

false negatives, which are often used as the basis

for other evaluation metrics. Recently, with the

growing interest in explaining and visualizing

artificial intelligence, the confusion matrix has

also been used as a fundamental explanatory

component and a core visual element in many

Explainable AI (XAI) toolkits and tutorials [16].

2.8. Data Preprocessing and Data

Augmentation

2.8.1. Resize and Rescale

Resizing images in transfer learning

ensures a consistent input size for the model,

improving computational efficiency by

adjusting the image resolution to fit device

constraints such as memory limits [17].

Rescaling involves normalizing pixel scales to

accelerate model convergence, reduce

numerical issues, and enhance learning

stability, as well as adapting the model to the

diverse characteristics of the data [18].

2.8.2. Split Ratio

The choice of dataset split ratio in

machine learning is crucial for optimizing

model performance and evaluation. The

proportion allocated to training and testing

subsets directly affects the model's ability to

generalize. A low training proportion can

prevent the model from understanding complex

data patterns, potentially leading to overfitting,

where the model fits too closely to the training

data but fails to generalize to new data.

Conversely, a high training proportion can

make the model less flexible and prone to

underfitting, where the model fails to capture

significant variations in the data.[19].

2.8.3. Rotation and Flip

Rotation and flipping are common

preprocessing techniques in machine learning

for image datasets, especially in computer

vision tasks. Rotation diversifies the dataset by

rotating images at angles such as 90 degrees,

180 degrees, or more complex angles, helping

the model handle object orientation variations,

prevent overfitting, and improve recognition

from different viewpoints [20]. Meanwhile,

horizontal or vertical flipping creates additional

variations in the dataset by mirroring images,

enhancing the model's generalization across

various orientations in the test data. Balancing

the use of rotation and flipping is crucial to

preserving the original meaning of the images

and avoiding significant information loss

during preprocessing. [21].

2.8.4. Tools

OpenCV (Open Source Computer

Vision) is an essential open-source library for

image processing and computer vision

applications. Released in 1999, the library

supports basic image operations such as

reading, writing, color conversion, cropping,

and resizing. OpenCV also includes a range of

computer vision algorithms, including face and

object detection, tracking, feature matching,

and segmentation, enabling the development of

advanced machine vision systems [22].

Keras provides a tool called

ImageDataGenerator that performs real-time

augmentation of tensor image datasets. This

function continuously generates batches of data

[23].

2.9. Fine Tuning

Fine-tuning in the context of deep

learning involves adjusting a pre-trained neural

network model for a more specific task. First, a

model pre-trained on a large dataset such as

ImageNet is selected. Then, the model is

adapted for the specific task by modifying the

last layers and adding new layers to fit the

desired output. During fine-tuning, some layers,

especially the early ones that capture general

features, may be kept unchanged (frozen), while

the new layers are retrained for the specific task.

[24].

2.10. Method of Collecting Data

2.10.1. Literature Review

The collection of literature review data is

a systematic approach to gathering information

from various relevant sources such as academic

databases and digital libraries. This process

involves identifying research questions,

searching for scholarly articles and books,

evaluating their relevance and quality, and

analyzing them to understand relevant concepts,

theories, and methodologies [25].

https://doi.org/10.15408/jti.v17i2.40453

Jurnal Teknik Informatika Vol. 17 No. 2, Oktober 2024 (139-152)
ISSN: p-ISSN 1979-9160 (Print)| e-ISSN 2549-7901 (Online)
DOI: https://doi.org/10.15408/jti.v17i2.40453

143
Arini et al, Performance Analysis Of…

2.10.2. Field Study

Field studies use observational data

collection, which involves systematic and direct

observation of objects, behaviors, or

phenomena in their natural context. Researchers

observe events directly without significant

interference, using methods such as participant

or non-participant observation. This approach

collects data on behavior, social interactions,

and contextual situations, providing in-depth

insights into human behavior, group dynamics,

or environmental characteristics in qualitative

research [26].

2.11. Development Method CRISP-DM

The CRISP-DM (Cross-Industry

Standard Process for Data Mining) framework

is utilized in this study to guide the systematic

approach to analyzing the performance of

Transfer Learning models in detecting AI-

generated and real images. This framework is

composed of several phases, including Business

Understanding, Data Understanding, Data

Preparation, Modeling, Evaluation, and

Deployment. The selected Transfer Learning

models InceptionV3, VGG16, and

DenseNet121 are integrated into the Data

Preparation, Modeling, and Evaluation phases

of this framework, each contributing uniquely

to the overall process.

Data Preparation: In the Data Preparation

phase, the dataset is preprocessed to ensure

compatibility with the chosen models. Each

model requires specific image input sizes and

data normalization procedures. InceptionV3,

for example, requires images to be resized to

299x299 pixels, while VGG16 and

DenseNet121 work with 224x224 pixels. The

preprocessing steps also include data

augmentation techniques, such as rotation,

flipping, and scaling, which are applied to

enhance the robustness of the models.

Modeling: During the Modeling phase,

the three Transfer Learning models are fine-

tuned to adapt to the specific characteristics of

the AI-generated and real images in the dataset.

Fine-tuning involves adjusting the pre-trained

weights of the models on the new dataset,

freezing some layers to retain the general

features learned from the original training on

large datasets like ImageNet, while retraining

the final layers to improve specificity in

distinguishing AI-generated images. The choice

of optimizer, learning rate, and number of

epochs are carefully selected for each model to

maximize performance.

Evaluation: The Evaluation phase

focuses on assessing the models' performance

using metrics confusion matrix and binary

cross-entropy loss. A confusion matrix is

generated to visualize the performance of each

model in correctly identifying AI-generated and

real images. InceptionV3, with its efficient

architecture, shows strengths in scenarios with

complex image patterns, while VGG16 and

DenseNet121 offer deeper feature extraction

capabilities that are beneficial in cases where

subtle differences between AI-generated and

real images need to be detected [27].

Figure 4. Phase of CRISP-DM method

3. RESULTS AND DISCUSSION

3.1. Research Plan

3.1.1. Business Understanding

The goal is to compare the performance

of three transfer learning (TL) algorithms

InceptionV3, VGG16, and DenseNet121 due to

the lack of existing research in this area, in order

to identify the optimal performance in detecting

AI-generated images compared to real images.

3.1.2. Data Understanding

a. Dataset Search

1. The researchers began their search for

datasets on Kaggle, a well-known

platform offering a wide variety of

datasets and research projects for data

scientists and machine learning

enthusiasts.

2. After registering and logging into

Kaggle, the researchers utilized the

search feature by entering keywords such

as "AI Image and Real," "AI Image

https://doi.org/10.15408/jti.v17i2.40453

Jurnal Teknik Informatika Vol. 17 No. 2, Oktober 2024 (139-152)
ISSN: p-ISSN 1979-9160 (Print)| e-ISSN 2549-7901 (Online)
DOI: https://doi.org/10.15408/jti.v17i2.40453

144
Arini et al, Performance Analysis Of…

Generated," and "AI vs Real Image" to

identify relevant datasets.

3. Kaggle displayed a list of search results

matching the entered keywords, allowing

the researchers to review and assess

potential datasets that fit their research

needs.

4. The researchers evaluated the identified

datasets based on criteria such as image

consistency, the number of images, class

distribution, and image clarity, ensuring

that the dataset met the requirements for

training with transfer learning methods.

5. After selecting a suitable dataset, the

researchers proceeded to download it

from Kaggle for further processing and

analysis in their research efforts.

b. Data Visualization

Visualization plays a key role in

understanding the distribution and

characteristics of the dataset. In this phase,

various visualizations are generated to provide

insights into the dataset composition and the

impact of preprocessing steps:

1. Class Distribution Visualization: Bar

charts are used to visualize the

distribution of AI-generated and real

images across training, validation, and

test sets. This helps ensure that the

dataset is balanced and that the models

are exposed to a diverse range of images

during training.

2. Class Distribution Visualization: Bar

charts are used to visualize the

distribution of AI-generated and real

images across training, validation, and

test sets. This helps ensure that the

dataset is balanced and that the models

are exposed to a diverse range of images

during training.

Here are the steps to create a bar chart

visualization of the dataset split ratio:

1. Import the necessary modules: `os` for

system operations, `pandas` for data

manipulation, `seaborn` and

`matplotlib.pyplot` for visualization. Use

the code `import os`, `import pandas as

pd`, `import seaborn as sns`, and `import

matplotlib.pyplot as plt.

2. Define the directory where the data is

located using `directory =

"/content/data/train_split"`.

3. Count the number of images for each

class (real and AI) in each part of the

dataset (train, test, and validation) using

list comprehensions and the `len()`

function. Example code: `train_real =

len([os.path.join(directory+'/train/real',

filename) for filename in

os.listdir(directory+'/train/real')])`.

4. Create a DataFrame from the previously

counted data. This DataFrame contains

information about the number of images

for each class in each part of the dataset.

5. "Melt" the DataFrame for visualization.

Melting changes the DataFrame structure

from wide format to long format, which

is more suitable for visualization.

Example code: `melted_df =

df.melt(id_vars=['Dataset'],

value_vars=['real', 'ai'],

var_name='Class',

value_name='Count')`.

6. Finally, create a plot using seaborn to

display the dataset distribution for each

part (train, test, and validation). This plot

shows the number of images on the y-

axis and the dataset type (real or AI) on

the x-axis, with dataset parts (train, test,

or validation) represented by color. Use

the code `sns.barplot(data=melted_df,

x='Dataset', y='Count', hue='Class')`.

Here are the steps to create a

visualization of training, testing, and validation

sample sets with an output of 10 images:

1. First, code randomly selects 5 samples

from the "real" and "AI" classes in the

training dataset using `random.sample`.

2. Next, these samples are plotted using the

`plot_samples` function.

3. Then, the plot title is set to

"Training/Test/Validation Set Samples"

with a font size of 30.

4. These three steps are repeated three times

for samples from the training, testing, and

validation sets.

3.1.3. Data Preparation

a. Data Preprocessing

1. Split Ratio

a) The code first collects all image

files from the 'AI' and 'real'

directories within the train

directory.

b) Using `train_test_split` from

scikit-learn, the dataset for each

https://doi.org/10.15408/jti.v17i2.40453

Jurnal Teknik Informatika Vol. 17 No. 2, Oktober 2024 (139-152)
ISSN: p-ISSN 1979-9160 (Print)| e-ISSN 2549-7901 (Online)
DOI: https://doi.org/10.15408/jti.v17i2.40453

145
Arini et al, Performance Analysis Of…

class (AI and real) is divided into

training, testing, and validation

sets. The proportions are set using

`random_state` to ensure

consistency in the splits each time

the code is run.

c) Next, the code creates a new

directory structure to store the

divided dataset: train, test, and

validation.

d) Each of these directories contains

subdirectories 'AI' and 'real'

representing the dataset classes.

e) Image files from the training,

testing, and validation sets for each

class are moved to their respective

directories based on the previous

split using `shutil.copy`.

f) After this process, there are three

new directories containing images

divided into training, testing, and

validation sets. This directory

structure is ready to be used as

input for the model.

2. Rescaling: This is done using the

parameter `rescale = 1/255.`, which

adjusts pixel values to be between 0 and

1.

3. Resizing: This is done using the

parameter `target_size = (224, 224)`,

which resizes the images to dimensions

of 224x224 pixels.

b. Data Augmentation

To enhance the robustness of the models,

data augmentation techniques such as rotation,

flipping, zooming, and shifting are applied.

These techniques artificially increase the size of

the training dataset and help the models

generalize better to unseen data. Here is a

further explanation:

1. Horizontal Flip: Applied using

`horizontal_flip = True` to perform

horizontal flipping of the images.

2. Vertical Flip: Applied using

`vertical_flip = True` to perform vertical

flipping of the images.

3. Rotation Range: Rotates images within a

range of 0.3 degrees using

`rotation_range = 0.3`.

4. Width Shift Range: Shifts images

horizontally by 0.25 of the image width

using `width_shift_range = 0.25`.

5. Height Shift Range: Shifts images

vertically by 0.25 of the image height

using `height_shift_range = 0.25`.

6. Channel Shift Range: Shifts color

channels within a range of 0.35 using

`channel_shift_range = 0.35`.

7. Shear Range: Applies shear

transformation to images within a range

of 0.2 using `shear_range = 0.2`.

8. Zoom Range: Applies zoom to images

within a range of 0.4 using `zoom_range

= 0.4`.

9. ZCA Whitening: Uses `zca_whitening =

True` to reduce pixel correlation in

images.

3.1.4. Modelling

Next is the modeling phase. For this

study, the researchers chose to use three transfer

learning models: InceptionV3, VGG16, and

DenseNet121. Additionally, there are 3

optimizers (Adam, SGD, and RMSprop), 3

dataset split ratios (60:40, 70:30, and 80:20),

and 2 epoch types (20 and 50). The base layers

of each model are frozen to retain the general

features learned from ImageNet, while the top

layers are re-trained on the new dataset. This

allows the models to adapt to the specific

nuances of AI-generated and real images.

Different optimizers (Adam, SGD, RMSprop)

and lratio dataset are tested to find the optimal

training configuration for each model. The

number of epochs is varied to determine the

point at which each model achieves the best

balance between accuracy and overfitting. Here

is a further explanation:

a. Import the `Sequential` class from the

`models` module in Keras. `Sequential`

is a Keras model that allows for adding

layers sequentially.

b. Import the `Flatten` and `Dense` classes

from the `layers` module in Keras.

`Flatten` is used to flatten the output from

the previous layer into a single

dimension, while `Dense` is used to add

fully connected layers.

c. Import the chosen transfer learning

models from the `applications` module in

Keras.

d. Import the `ImageDataGenerator` class

from the `preprocessing.image` module

in Keras. `ImageDataGenerator` is used

for data augmentation on images during

model training.

https://doi.org/10.15408/jti.v17i2.40453

Jurnal Teknik Informatika Vol. 17 No. 2, Oktober 2024 (139-152)
ISSN: p-ISSN 1979-9160 (Print)| e-ISSN 2549-7901 (Online)
DOI: https://doi.org/10.15408/jti.v17i2.40453

146
Arini et al, Performance Analysis Of…

e. Create each of the chosen transfer

learning models using pre-trained

weights from the ImageNet dataset

(`weights='imagenet'`), without the top

layer (`include_top=False`). Then

specify the expected input shape for each

model.

f. Add a `Flatten` layer to flatten the output

from each transfer learning model into a

single dimension. Add several `Dense`

layers with ReLU activation, followed by

a final `Dense` layer with a single neuron

and sigmoid activation. These layers can

be trained, while the previous transfer

learning layers are frozen.

3.1.5. Evaluation

The "evaluation" phase in the CRISP-

DM methodology is a crucial step in

comparative research on the performance of

InceptionV3, VGG16, and DenseNet121

models in detecting AI-generated images versus

real images. During training, models are

evaluated using metrics such as confusion

matrix and binary cross-entropy loss. These

metrics are tracked across different

configurations to identify the best-performing

model under various conditions. Here is an

explanation of the binary cross-entropy loss

function:

a. Using `evaluate_generator` to assess the

model with test data (`test_set`). This

means the model will be evaluated using

data that was not used during the training

or validation processes.

b. Printing the evaluation results as

percentages. `model.metrics_names` is

an attribute that contains a list of metric

names used in the model.

`model.metrics_names[0]` refers to the

name of the first metric, which in this

context is the loss, and

`model.metrics_names[1]` refers to the

name of the second metric, which is

accuracy.

c. The model is re-evaluated using the

`evaluate` method, this time with

`test_set`. The evaluation results, namely

loss and accuracy, are stored in the

variables `test_loss` and `test_accuracy`.

Finally, these results are printed as

percentages to illustrate the model's

performance on the test data.

Here is an explanation of the confusion matrix:

a. The text "-----CONFUSION MATRIX--

---" is printed to mark the visualization of

the confusion matrix.

b. Predictions are made on the test data

(`test_data`) using the trained model, and

the results are stored in the `predictions`

variable.

c. The confusion matrix (`conf_m`) is

computed using the `confusion_matrix`

function from sklearn with `test_labels`

(the true labels of the test data) and

`np.round(predictions)` (the labels

predicted by the model).

d. Accuracy (`acc`) is calculated using the

`accuracy_score` function from sklearn

with `test_labels` and

`np.round(predictions)`, then multiplied

by 100 to convert it to a percentage.

e. The number of true negatives (tn), false

positives (fp), false negatives (fn), and

true positives (tp) is extracted from the

confusion matrix using the `ravel()`

method.

f. The confusion matrix is visualized by

calling the `plot_confusion_matrix`

function with arguments

`conf_mat=conf_m` (the confusion

matrix), ̀ figsize=(6, 6)` (image size), and

`cmap=matplotlib.pyplot.cm.Reds`

(color map for visualization).

g. After visualization, the text "-----

CLASSIFICATION REPORT-----" is

printed to mark the presentation of the

classification report.

h. Precision (`precision`) is calculated using

the formula (tp / (tp + fp) * 100), where

TP is true positive and FP is false

positive.

i. Recall (`recall`) is calculated using the

formula (tp / (tp + fn) * 100), where FN

is false negative.

j. Accuracy, precision, recall, and F1-score

are printed as percentages along with

their respective values. The F1-score is

calculated using the harmonic mean

formula (2 * precision * recall /

(precision + recall)).

https://doi.org/10.15408/jti.v17i2.40453

Jurnal Teknik Informatika Vol. 17 No. 2, Oktober 2024 (139-152)
ISSN: p-ISSN 1979-9160 (Print)| e-ISSN 2549-7901 (Online)
DOI: https://doi.org/10.15408/jti.v17i2.40453

147
Arini et al, Performance Analysis Of…

3.2. Results and Discussion

3.2.1. Research Results

a. Dataset search results

Based on the data obtained from the

Kaggle website, the dataset was downloaded

and extracted from the ZIP file into PNG files.

The dataset contains a total of 975 images, with

539 images generated by AI and 436 real

images. This dataset was obtained from Kaggle

and created by Bekhzod Olimov.

b. Data visualization results

There are two data visualizations: the

first is the visualization for the dataset split ratio

using a bar chart, and the second is the

visualization for random sample images.

Figure 5. One of data visualization split ratio dataset

Figure 6. One of data visualization random samples image

c. Data preparation results

Figure 7. One of ImageDataGenerator Output

 Figure 7 shows the results of the

ImageDataGenerator process. The training set

contains 776 images across 2 classes, while the

validation and test sets have 340 and 152

images, respectively. "CPU times" and "Wall

time" measure execution duration and real-time

duration. Data augmentation is consistently

applied across all experiments.

d. Evaluation results

1. Split ratio (60:40) and Optimizer (Adam)

Tabel 1. Result split ratio (60:40) and optimizer (adam)

Model

Classification Report Traini

ngTim

e

(minut

e)

Confusion Matrix

Accuracy
Precisio

n
Recall

F1-

Score

Binary

Cross

Entro

py

TP TN FP FN

Inceptio

nV3-

20

75.09% 69.86%
77.86

%

73.65

%

56.22

%
43

11

8
102 44 29

VGG16-

20
81.23% 77.14%

82.44

%

79.70

%

48.71

%
144

13

0
108 32 23

DenseN

et121

-20

78.16% 71.90%
83.97

%

77.46

%

59.63

%
43

11

9
110 43 21

Inceptio

nV3-

50

75.09% 72.31%
71.76

%

72.03

%

54.92

%
99

12

6
94 36 37

VGG16-

50
76.79% 74.42%

73.28

%

73.85

%

46.70

%
172

12

9
96 33 35

DenseN

et121

-50

78.50% 80.36%
68.70

%

74.07

%

45.48

%
63

14

0
90 22 41

2. Split ratio (60:40) and Optimizer (SGD)

Tabel 2. Result split ratio (60:40) and optimizer (SGD)

Model

Classification Report Traini

ngTim

e

(minut

e)

Confusion Matrix

Accuracy
Precisio

n
Recall

F1-

Score

Binary

Cross

Entro

py

TP TN FP FN

Inceptio

nV3-

20

74.06% 71.32%
70.23

%

70.77

%

51.23

%
45

12

5
92 37 39

VGG16-

20
73.72% 85.53%

49.62

%

62.80

%

53.96

%
151

15

1
65 11 66

DenseN

et121

-20

75.77% 81.91%
58.78

%

68.44

%

49.96

%
42

14

5
77 17 54

Inceptio

nV3-

50

75.77% 71.43%
76.34

%

73.80

%

50.67

%
69

12

2
100 40 31

VGG16-

50
77.13% 69.05%

88.55

%

77.59

%

49.14

%
374

11

0
116 52 15

DenseN

et121

-50

79.18% 75.74%
78.63

%

77.15

%

44.24

%
77

12

9
103 33 28

3. Split ratio (60:40) and Optimizer

(RMSprop)

Tabel 3. Result split ratio (60:40) and optimizer (RMSprop)

Model

Classification Report Traini

ngTim

e

(minut

e)

Confusion Matrix

Accuracy
Precisio

n
Recall

F1-

Score

Binary

Cross

Entro

py

TP TN FP FN

Inceptio

nV3-

20

77.82% 77.50%
70.99

%

74.11

%

50.93

%
44

13

5
93 27 38

VGG16-

20
75.09% 75.00%

66.41

%

70.45

%

47.25

%
144

13

3
87 29 44

DenseN

et121

-20

72.01% 73.79%
58.02

%

64.96

%

61.07

%
45

13

5
76 27 55

Inceptio

nV3-

50

75.09% 75%
66.41

%

70.45

%

50.24

%
86

13

3
87 29 44

VGG16-

50
78.50% 76.15%

75.57

%

75.86

%

60.63

%
296

13

1
99 31 32

DenseN

et121

-50

74.40% 71.54%
70.99

%

71.26

%

52.48

%
77

12

5
93 37 38

https://doi.org/10.15408/jti.v17i2.40453

Jurnal Teknik Informatika Vol. 17 No. 2, Oktober 2024 (139-152)
ISSN: p-ISSN 1979-9160 (Print)| e-ISSN 2549-7901 (Online)
DOI: https://doi.org/10.15408/jti.v17i2.40453

148
Arini et al, Performance Analysis Of…

4. Split ratio (70:30) and Optimizer (Adam)

Tabel 4. Result split ratio (70:30) and optimizer (adam)

Model

Classification Report Traini

ngTim

e

(minut

e)

Confusion

Matrix

Accuracy
Precisio

n
Recall

F1-

Score

Binary

Cross

Entro

py

TP
T

N
FP FN

Inceptio

nV3-

20

81.65% 76.26%
80.92

%

78.52

%

41.68

%
43

15

2

10

6
33 25

VGG16-

20
75.32% 81.93%

51.91

%

63.55

%

49.94

%
158

17

0
68 15 63

DenseN

et121

-20

77.22% 67.88%
85.50

%

75.67

%

58.26

%
49

13

2

11

2
53 19

Inceptio

nV3-

50

75.32% 81.93%
51.91

%

63.55

%

57.99

%
48

17

0
68 15 63

VGG16-

50
76.19% 81.98%

69.47

%

75.20

%

49.85

%
216

10

1
91 20 40

DenseN

et121

-50

80.70% 78.23%
74.05

%

76.08

%

40.85

%
78

15

8
97 27 34

5. Split ratio (70:30) and Optimizer (SGD)

Tabel 5. Result split ratio (70:30) and optimizer (SGD)

Model

Classification Report Traini

ngTim

e

(minut

e)

Confusion

Matrix

Accuracy
Precisio

n
Recall

F1-

Score

Binary

Cross

Entro

py

TP
T

N
FP FN

Inceptio

nV3-

20

73.42% 63.91%
82.44

%

72.00

%

49.73

%
44

12

4

10

8
61 23

VGG16-

20
74.21% 68.97%

91.60

%

78.69

%

56.31

%
165 67

12

0
54 11

DenseN

et121

-20

78.16% 84.44%
58.02

%

68.78

%

50.55

%
49

17

1
76 14 55

Inceptio

nV3-

50

79.43% 79.46%
67.94

%

73.25

%

44.26

%
45

16

2
89 23 42

VGG16-

50
75.79% 78.69%

73.28

%

75.89

%

50.96

%
410 95 96 26 35

DenseN

et121

-50

79.37% 89.11%
68.70

%

77.59

%

50.88

%
133

11

0
90 11 41

6. Split ratio (70:30) and Optimizer

(RMSprop)

Tabel 6. Result split ratio (70:30) and optimizer (RMSprop)

Model

Classification Report Traini

ngTim

e

(minut

e)

Confusion

Matrix

Accuracy
Precisio

n
Recall

F1-

Score

Binary

Cross

Entro

py

TP
T

N
FP FN

Inceptio

nV3-

20

78.72% 70.27%
87.84

%

78.08

%

46.05

%
57

14

0

13

0
55 18

VGG16-

20
78.97% 81.45%

77.10

%

79.22

%

47.59

%
160 98

10

1
23 30

DenseN

et121

-20

78.80% 80.19%
64.89

%

71.73

%

47.01

%
51

16

4
85 21 46

Inceptio

nV3-

50

75.63% 90.91%
45.80

%

60.91

%

52.53

%
62

17

9
60 6 71

Table 6 continued…

Model

Classification Report

Traini

ngTim

e

(minut

e)

Confusion Matrix

Accuracy
Precisio

n
Recal

F1-

Score

Binary

Cro

ss

Ent

rop

y

TP TN FP FN

VGG16-

50
74.21% 84.38%

61.83

%

71.37

%

53.02

%
199

10

6
81 15 50

DenseN

et121

-50

78.97% 87.50%
69.47

%

77.45

%

54.56

%
68

10

8
91 13 40

7. Split ratio (80:20) and Optimizer (Adam)

Tabel 7. Result split ratio (80:20) and optimizer (adam)

Model

Classification Report Traini

ngTim

e

(minut

e)

Confusion Matrix

Accuracy
Precisio

n
Recall

F1-

Score

Binary

Cross

Entro

py

TP TN FP FN

Inceptio

nV3-

20

84.26% 81.33%
82.43

%

81.88

%

39.54

%
62

16

7
122 28 26

VGG16-

20
72.79% 82.50%

50.00

%

62.26

%

51.90

%
161 74 33 7 33

DenseN

et121

-20

73.47% 86.49%
48.48

%

62.14

%

61.80

%
58 76 32 5 34

Inceptio

nV3-

50

79.88% 89.11%
60.81

%

72.29

%

43.61

%
142

18

4
90 11 58

VGG16-

50
81.79% 84.67%

78.38

%

81.40

%

42.36

%
319

12

2
116 21 32

DenseN

et121

-50

80.27% 75.34%
83.33

%

79.14

%

42.22

%
93 63 55 18 11

8. Split ratio (80:20) and Optimizer (SGD)

Tabel 8. Result split ratio (80:20) and optimizer (SGD)

Model

Classification Report Traini

ngTim

e

(minut

e)

Confusion Matrix

Accuracy
Precisio

n
Recall

F1-

Score

Binary

Cross

Entro

py

TP TN FP FN

Inceptio

nV3-

20

83.38% 84.73%
75.00

%

79.57

%

38.70

%
57

17

5
111 20 37

VGG16-

20
61.22% 73.68%

21.21

%

32.94

%

60.95

%
160 76 14 5 52

DenseN

et121

-20

75.51% 89.47%
51.52

%

65.38

%

53.99

%
56 77 34 4 32

Inceptio

nV3-

50

82.31% 83.33%
75.76

%

79.36

%

38.68

%
62 71 50 10 16

VGG16-

50
76.87% 71.05%

81.82

%

76.06

%

47.59

%
471 59 54 22 12

DenseN

et121

-50

74.83% 70.42%
75.76

%

72.99

%

48.86

%
75 60 50 21 16

https://doi.org/10.15408/jti.v17i2.40453

Jurnal Teknik Informatika Vol. 17 No. 2, Oktober 2024 (139-152)
ISSN: p-ISSN 1979-9160 (Print)| e-ISSN 2549-7901 (Online)
DOI: https://doi.org/10.15408/jti.v17i2.40453

149
Arini et al, Performance Analysis Of…

9. Split ratio (80:20) and Optimizer

(RMSprop)

Tabel 9. Result split ratio (80:20) and optimizer (RMSprop)

Model

Classification Report Traini

ngTim

e

(minut

e)

Confusion

Matrix

Accuracy
Precisio

n
Recall

F1-

Score

Binary

Cross

Entro

py

TP
T

N
FP FN

Inceptio

nV3-

20

78.72% 89.47%
57.43

%

69.96

%

45.59

%
61

18

5
85 10 63

VGG16-

20
77.55% 80.00%

66.67

%

72.73

%

55.59

%
113 70 44 11 22

DenseN

et121

-20

80.95% 83.93%
71.21

%

77.05

%

44.05

%
58 72 47 9 19

Inceptio

nV3-

50

81.63% 79.10%
80.30

%

79.70

%

40.70

%
95 67 53 14 13

VGG16-

50
75.51% 71.43%

75.76

%

73.53

%

48.86

%
210 61 50 20 16

DenseN

et121

-50

78.23% 75.00%
77.27

%

76.12

%

43.63

%
70 64 51 17 15

3.2.2. The Influence of Aspects on Best

Performance Results

Tabel 10. The influence of aspects on best performance results

Pengaruh Aspek-Aspek Pada Hasil Performa Terbaik

TL /

Parameter
Nama Akurasi Keterangan

TL InceptionV3 81.65%

TL: InceptionV3, Split ratio:

70:30, Optimizer: Adam,
Epoch: 20

Split Ratio 70:30 81.65%
TL: InceptionV3,

Optimizer: Adam, Epoch: 20

Optimizer Adam 81.65%
TL: InceptionV3, Split ratio:

70:30, Epoch: 20

Epoch 50 81.63%
TL: InceptionV3, Split ratio:
70:30, Optimizer: RMSprop

a. Transfer Learning

Based on performance analysis using

various evaluation metrics, the transfer learning

model that consistently achieved the highest

accuracy percentage is InceptionV3.

InceptionV3:

1. Using the Adam optimizer, this model

achieved an accuracy of 81.65% with a

70:30 split ratio and 20 epochs.

2. With the RMSprop optimizer, the

accuracy reached 81.63% with the same

70:30 split ratio but with 50 epochs.

3. Using the SGD optimizer, this model

achieved an accuracy of 79.43% with a

70:30 split ratio and 50 epochs.

InceptionV3 consistently showed high

accuracy across various optimizers and with the

70:30 data split setting. This indicates the

model's reliability and effectiveness in handling

different dataset partitions and achieving high

classification performance.

b. Split Ratio Dataset

Based on performance analysis using

various evaluation metrics, the 70:30 split ratio

often results in the best performance in terms of

accuracy percentage. The experiments that

showed promising results are as follows:

DenseNet121:

1. With the Adam optimizer, accuracy

reached 79.18% at 50 epochs.

2. With the SGD optimizer, accuracy

reached 79.37% at 50 epochs.

3. With the RMSprop optimizer, the model

showed stability with an accuracy of

78.97% at 50 epochs.

InceptionV3:

1. With the Adam optimizer, accuracy

reached 81.65% at 20 epochs.

2. With the SGD optimizer, accuracy

reached 79.43% at 50 epochs.

3. With the RMSprop optimizer, accuracy

reached 81.63% at 50 epochs.

c. Optimizer

Based on the analysis using model

evaluation methods, the Adam optimizer often

yields the best performance in terms of accuracy

percentage.

1. DenseNet121 with Adam Optimizer, at a

70:30 split ratio and 50 epochs, achieved

an accuracy of 79.18%.

2. InceptionV3 with Adam Optimizer, at a

70:30 split ratio and 20 epochs, achieved

an accuracy of 81.65%.

Optimizer Adam generally provides

good performance due to its efficiency in

handling gradients and accelerating model

convergence. This effectiveness is

demonstrated in image classification tasks

using DenseNet121 and InceptionV3.

d. Epoch

Based on the performance analysis of the

models using various evaluation metrics, the

best accuracy results for the DenseNet121 and

InceptionV3 models tend to occur at epoch 50

in the experiments conducted.

1. DenseNet121, with a 70:30 split ratio and

50 epochs, achieved an accuracy of

79.37% with the SGD optimizer.

2. InceptionV3, with a 70:30 split ratio and

50 epochs, achieved an accuracy of

81.63% with the RMSprop optimizer.

https://doi.org/10.15408/jti.v17i2.40453

Jurnal Teknik Informatika Vol. 17 No. 2, Oktober 2024 (139-152)
ISSN: p-ISSN 1979-9160 (Print)| e-ISSN 2549-7901 (Online)
DOI: https://doi.org/10.15408/jti.v17i2.40453

150
Arini et al, Performance Analysis Of…

Although there were higher accuracy

results at epoch 20 for DenseNet121 (79.37%

with SGD optimizer) and InceptionV3 (81.65%

with Adam optimizer), the choice of epoch 50

as the optimal point is based on the better

consistency of performance across various

experiments. Higher results at epoch 20 in

specific cases indicate that the model may have

reached an optimal convergence point with the

validation data at that stage. However, overall,

epoch 50 provides a good balance between

sufficient learning time and the model’s ability

to achieve optimal generalization.

3.2.3. Comparasion of Results with Previous

Research

In the study conducted by Bekhzod

Olimov using the same dataset he created, titled

"AI-Generated Vs Real Images Classifier,"

several elements are compared with previous

research using the same dataset:

a. Previous research used only one transfer

learning model, ResNet150, while this

study compares three models:

InceptionV3, VGG16, and DenseNet121.

b. The dataset split ratio in previous

research was 90:5:5, whereas this study

experiments with split ratios of 60:40,

70:30, and 80:20.

c. Previous research used only one

optimizer, Adam, while this study

employs three optimizers: Adam, SGD,

and RMSprop, although Adam is used in

both studies.

d. Previous research used 8 epochs, whereas

this study experiments with 20 and 50

epochs.

e. The highest accuracy achieved in

previous research was 98.9%, while in

this study, the highest accuracy achieved

is 84.26% with InceptionV3 using Adam

optimizer, 80:20 split ratio, and 20

epochs.

f. The lowest loss in previous research was

27%, whereas the lowest loss in this

study for the InceptionV3 model is

38.68% with the RMSprop optimizer,

80:20 split ratio, and 50 epochs.

CONCLUSION

Configuration of split ratio, optimizer,

and epoch significantly affects model

performance. Here are the best and worst

parameter compositions based on average

accuracy and training time for each model

experiment:

a. The parameter composition that achieved

the best accuracy performance at 20

epochs is the RMSprop optimizer with an

80-20 dataset split ratio, reaching an

average accuracy of 79.70%.

b. The parameter composition that resulted

in the fastest training time at 20 epochs is

the Adam optimizer with a 60-40 dataset

split ratio, reaching an average training

time of 76.66 minutes.

c. The parameter composition that achieved

the best accuracy performance at 50

epochs is the Adam optimizer with an 80-

20 dataset split ratio, reaching an average

accuracy of 80.65%.

d. The parameter composition that resulted

in the fastest training time at 50 epochs is

the RMSprop optimizer with a 70-30

dataset split ratio, reaching an average

training time of 109.66 minutes.

Based on the performance evaluation

results discussed in the previous chapter, here

are the best evaluation results for each model

based on the evaluation methods applied:

a. Based on binary cross-entropy loss, the

lowest loss for InceptionV3 is 38.68%

using an 80-20 split ratio, RMSprop

optimizer, and 50 epochs. For VGG16,

the lowest loss is 46.70% using a 60-40

split ratio, Adam optimizer, and 50

epochs. For DenseNet121, the lowest

loss is 38.68% using a 70-30 split ratio,

Adam optimizer, and 50 epochs.

b. Based on the confusion matrix for

InceptionV3, the highest accuracy

achieved is 84.26%, with a precision of

81.33%, recall of 82.43%, F1-Score of

81.88, 167 True Positives (TP), 122 True

Negatives (TN), 28 False Positives (FP),

and 26 False Negatives (FN) using the

Adam optimizer, an 80-20 split ratio, and

20 epochs.

c. Based on the confusion matrix for

VGG16, the highest accuracy achieved is

81.79%, with a precision of 84.67%,

recall of 78.38%, F1-Score of 81.40, 122

True Positives (TP), 116 True Negatives

(TN), 21 False Positives (FP), and 32

False Negatives (FN) using the Adam

optimizer, an 80-20 split ratio, and 50

epochs.

https://doi.org/10.15408/jti.v17i2.40453

Jurnal Teknik Informatika Vol. 17 No. 2, Oktober 2024 (139-152)
ISSN: p-ISSN 1979-9160 (Print)| e-ISSN 2549-7901 (Online)
DOI: https://doi.org/10.15408/jti.v17i2.40453

151
Arini et al, Performance Analysis Of…

d. Based on the confusion matrix for

DenseNet121, the highest accuracy

achieved is 80.95%, with a precision of

83.93%, recall of 71.21%, F1-Score of

77.05, 72 True Positives (TP), 47 True

Negatives (TN), 9 False Positives (FP),

and 19 False Negatives (FN) using the

Adam optimizer, an 80-20 split ratio, and

20 epochs.

In this study, the researcher

acknowledges several limitations and

shortcomings. Based on the findings, the

following recommendations are proposed to

enhance future research: (1) Expanding from

the current binary classification to multi-class

classification could advance the study. (2)

Utilizing diverse datasets with varying

characteristics is crucial to assess the

consistency of results across different

conditions and to improve model

generalization. (3) Further fine-tuning of the

model by adding new layers, such as

convolutional or dense layers, may enhance

performance. (4) Experimenting with different

parameters like learning rate, batch size,

optimizer, and number of epochs, and

considering hyperparameter tuning or grid

search, could help identify the optimal

combination for better model performance.

REFERENCES

[1] D. Epstein, S. Jain, S. Wang, and Z.

Zhang, “Online Detection of AI-

Generated Images,” in Proc. ICCVW,

2023. [Online]. Available:

https://openaccess.thecvf.com/content/I

CCV2023W/DFAD/papers/Epstein_Onl

ine_Detection_of_AI-

Generated_Images__ICCVW_2023_pap

er.pdf

[2] S. S. Barahheem and T. V. Nguyen, “AI

vs. AI: Can AI Detect AI-Generated

Images?” [Online]. Available:

https://www.researchgate.net/publicatio

n/374269358_AI_vs_AI_Can_AI_Detec

t_AI-Generated_Images

[3] J. Gu et al., “AI-enabled image fraud in

scientific publications,” J. Big Data, vol.

10, no. 1, pp. 1-12, 2022. [Online].

Available: https://www-sciencedirect-

com.translate.goog/science/article/pii/S2

666389922001039?_x_tr_sl=en&_x_tr_t

l=id&_x_tr_hl=id&_x_tr_pto=tc

[4] A. Peryanto, A. Yudhana, and R. Umar,

“Rancang Bangun Klasifikasi Citra

Dengan Teknologi Deep Learning

Berbasis Metode Convolutional Neural

Network,” in Proc. FORMAT, 2019, vol.

8, pp. 10-20. [Online]. Available:

https://publikasi.mercubuana.ac.id/index

.php/format/article/view/7849

[5] Y. Zhou, X. Zhang, Y. Wang, and B.

Zhang, “Transfer Learning and Its

Application Research,” J. Phys. Conf.

Ser., vol. 1920, no. 1, p. 012058, 2021.

[Online]. Available:

https://iopscience.iop.org/article/10.108

8/1742-6596/1920/1/012058/pdf

[6] M. Ahmed et al., “An inception V3

approach for malware classification

using machine learning and transfer

learning,” J. King Saud Univ. - Comput.

Inf. Sci., vol. 34, no. 8, pp. 1-12, 2023.

[Online]. Available:

https://www.sciencedirect.com/science/a

rticle/pii/S2666603022000252

[7] A. M. Ibrahim et al., “Skin Cancer

Classification Using Transfer Learning

by VGG16 Architecture (Case Study on

Kaggle Dataset),” Open Access Library

Journal, vol. 10, pp. 1-12, 2023. [Online].

Available:

https://www.scirp.org/journal/paperinfor

mation?paperid=126855

[8] J. Pardede and D. A. L. Putra,

“Implementasi DenseNet Untuk

Mengidentifikasi Kanker Kulit

Melanoma,” JUTISI, vol. 8, no. 1, pp. 10-

20, 2020. [Online]. Available:

https://journal.maranatha.edu/index.php/

jutisi/article/download/2814/1708/10108

[9] C. Janiesch, P. Zschech, and K. Heinrich,

“Machine learning and deep learning,”

Bus. Inf. Syst. Eng., vol. 63, no. 3, pp.

303–314, 2021. [Online]. Available:

https://link.springer.com/article/10.1007

/s12525-021-00475-2

[10] P. Purwono et al., “Understanding of

Convolutional Neural Network (CNN):

A Review,” IJRCS, vol. 1, no. 1, pp. 1-8,

2022. [Online]. Available:

https://www.pubs2.ascee.org/index.php/

IJRCS/article/view/888

[11] A. Hosna et al., “Transfer learning: a

friendly introduction,” J. Big Data, vol. 9,

no. 1, pp. 1-21, 2022. [Online].

Available:

https://doi.org/10.15408/jti.v17i2.40453

Jurnal Teknik Informatika Vol. 17 No. 2, Oktober 2024 (139-152)
ISSN: p-ISSN 1979-9160 (Print)| e-ISSN 2549-7901 (Online)
DOI: https://doi.org/10.15408/jti.v17i2.40453

152
Arini et al, Performance Analysis Of…

https://journalofbigdata.springeropen.co

m/articles/10.1186/s40537-022-00652-w

[12] U. Ungkawa and G. A. Hakim,

“Klasifikasi Warna pada Kematangan

Buah Kopi Kuning menggunakan

Metode CNN Inception V3,”

ELKOMIKA, vol. 11, no. 1, pp. 12-20,

2023. [Online]. Available:

https://ejurnal.itenas.ac.id/index.php/elk

omika/article/view/8899

[13] W. W. Kusuma, R. R. Isnanto, and A.

Fauzi, “Analisis Perbandingan Model

CNN VGG16 Dan DenseNet121

Menggunakan Kerangka Kerja

Tensorflow Untuk DeteksiI Jenis

Hewan,” J. Teknol. Komput., vol. 8, no.

1, pp. 20-30, 2023. [Online]. Available:

https://ejournal3.undip.ac.id/index.php/jt

k/article/view/37009/28851

[14] S. Montaha et al., “BreastNet18: A High

Accuracy Fine-Tuned VGG16 Model

Evaluated Using Ablation Study for

Diagnosing Breast Cancer from

Enhanced Mammography Images,”

Biology, vol. 10, no. 12, p. 1347, 2021.

[Online]. Available:

https://www.mdpi.com/2079-

7737/10/12/1347

[15] M. A. Djohar et al., “Liver Segmentation

Using Convolutional Neural Network

Method with U-Net Architecture,” J. Inf.

Technol. Electr., vol. 5, no. 2, pp. 1-8,

2022. [Online]. Available:

https://ojs.uma.ac.id/index.php/jite/articl

e/view/6751/4088

[16] H. Shen et al., “Designing Alternative

Representations of Confusion Matrices

to Support Non-Expert Public

Understanding of Algorithm

Performance,” in Proc. 23rd ACM Conf.

Comput. Interact. Sci. Pract., 2020, pp. 1-

11. [Online]. Available:

https://dl.acm.org/doi/abs/10.1145/3415

224

[17] S. Saponara and A. Elhanashi, “Impact of

Image Resizing on Deep Learning

Detectors for Training Time and Model

Performance,” in Lecture Notes in

Comput. Sci., vol. 12345, pp. 1-10, 2022.

[Online]. Available:

https://link.springer.com/chapter/10.100

7/978-3-030-95498-7_2

[18] Z. Pan et al., “Towards Bidirectional

Arbitrary Image Rescaling: Joint

Optimization and Cycle Idempotence,”

in Proc. CVPR, 2022. [Online].

Available:

https://openaccess.thecvf.com/content/C

VPR2022/html/Pan_Towards_Bidirectio

nal_Arbitrary_Image_Rescaling_Joint_

Optimization_and_Cycle_Idempotence_

CVPR_2022_paper.html

[19] A. Racz, D. Bajusz, and K. Heberger,

“Effect of Dataset Size and Train/Test

Split Ratios in QSAR/QSPR Multiclass

Classification,” Molecules, vol. 26, no. 4,

p. 1111, 2021. [Online]. Available:

https://www.mdpi.com/1420-

3049/26/4/1111

[20] K. Zhang, Z. Cao, and J. Wu, “Circular

Shift: An Effective Data Augmentation

Method For Convolutional Neural

Network On Image Classification,” in

Proc. 25th Int. Conf. Pattern Recognit.,

2020, pp. 1-8. [Online]. Available:

https://ieeexplore.ieee.org/abstract/docu

ment/9191303

[21] A. Abdelhamed et al., “NTIRE 2020

Challenge on Real Image Denoising:

Dataset, Methods and Results,” in Proc.

CVPRW, 2020, pp. 1-12. [Online].

Available:

https://openaccess.thecvf.com/content_C

VPRW_2020/html/w31/Abdelhamed_N

TIRE_2020_Challenge_on_Real_Image

_Denoising_Dataset_Methods_and_CV

PRW_2020_paper.html

[22] J. Sigut et al., “OpenCV Basics: A

Mobile Application to Support the

Teaching of Computer Vision Concepts,”

in Proc. 2020 IEEE Global Eng. Educ.

Conf., 2020, pp. 1-8. [Online]. Available:

https://ieeexplore.ieee.org/abstract/docu

ment/9103956

[23] B. Raharjo, “Deep Learning dengan

Python,” Yayasan Prima Agus Teknik,

2022. [Online]. Available:

https://digilib.stekom.ac.id/assets/dokum

en/ebook/feb_eab5a7c1f295129ba69a76

fee4dff22266879314_1643796893.pdf

[24] A. K. Reyes, J. C. Caicedo, and J.

Camargo, “Fine-tuning Deep

Convolutional Networks for Plant

Recognition,” in Proc. 2019 IEEE Conf

https://doi.org/10.15408/jti.v17i2.40453

