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ABSTRACT  

 

The abstract is a synopsis of the work containing the problems 

studied, research purpose, information, and methods used to solve 

problems and conclusions. Articles must be submitted in print-ready 

format and are limited to a minimum of ten (10) pages and a 

maximum of twelve (12) pages. Abstract is a synopsis of the work 

that contains the issues studied, the research purpose, the 

information and methods used to solve the problem, and the 

research conclusion. Abstracts are limited to 200 words and should 

not contain references, mathematical equations, figures, and tables. 

The font size for abstracts, keywords, and an article body is 11pt. 

Keywords are no more than six (6) words, but the minimum is three 

(3) words. 
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ABSTRACT  

 

This study aims to analyze and compare the performance of three transfer 

learning methods, namely InceptionV3, VGG16, and DenseNet121, in 

detecting AI-generated and real images. The background of this research 

is the unknown performance of transfer learning methods for detecting 

AI-generated and real images. This study introduces innovation by 

conducting 54 experiments involving three types of transfer learning, 

three dataset split ratios (60:40, 70:30, and 80:20), three optimizers 

(Adam, SGD, and RMSprop), two numbers of epochs (20 and 50), and 

the addition of dense and flatten layers during fine tuning. Performance 

evaluation was conducted using binary cross entropy loss and confusion 

matrix. This research provides significant benefits in determining the 

most effective transfer learning model for detecting AI-generated and real 

images and offers practical guidance for further development. The results 

show that the InceptionV3 model with the Adam optimizer, an 80:20 split 

ratio, and 20 epochs achieved the highest accuracy of 84.26%, with a loss 

of 39.54%, precision of 81.33%, recall of 82.43%, and an F1-Score of 

81.88%. 

 

Keywords : AI generated image; deep learning, transfer learning; 

inceptionV3; VGG16; DenseNet121; 
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1. INTRODUCTION 

 

 

The rapid advancement of artificial 

intelligence (AI) has led to the proliferation of 

AI-generated content, including images that are 

often indistinguishable from real ones. This 

raises significant challenges in various domains, 

from digital forensics to social media platforms, 

where the ability to distinguish between AI-

generated and real images is crucial [1]. As a 

result, the application of machine learning 

techniques, particularly Transfer Learning, has 

become an essential area of research to address 

these challenges [2]. 

Transfer Learning has proven effective in 

scenarios where limited labeled data is 

available, as it leverages pre-trained models to 

transfer knowledge from one task to another [3]. 

In the context of image recognition, Transfer 

Learning allows models to generalize from 

previously learned features, making it highly 

suitable for tasks such as detecting AI-generated 

images [4]. Despite its potential, there is still a 

gap in the literature regarding the comparative 

performance of different Transfer Learning 

models in this specific application [5]. 

This study aims to fill that gap by 

evaluating and comparing the performance of 

three widely used Transfer Learning models: 

InceptionV3, VGG16, and DenseNet121. These 

models have been selected for their proven 

effectiveness in image classification tasks [6]. 

The choice of these models is motivated by their 

distinct architectural features, which offer 

varying strengths in handling image data, 

particularly in complex scenarios like 

distinguishing AI-generated images from real 

ones [7]. 

InceptionV3, for example, is known for 

its efficient use of computational resources and 

its ability to maintain high accuracy even with 

fewer parameters. On the other hand, VGG16's 

depth allows it to capture more complex 

features, while DenseNet121's dense 

connectivity promotes richer feature 

representations, reducing the risk of overfitting 

[8]. By analyzing these models under different 

conditions, this research seeks to identify the 

most effective approach for this critical task. 

The findings of this study will not only 

contribute to the academic understanding of 

Transfer Learning's application in AI-generated 

image detection but also provide practical 

insights for developing more robust image 

recognition systems. This is particularly 

relevant in an era where the line between real 

and synthetic media is increasingly blurred, and 

the need for reliable detection methods is more 

urgent than ever. 

 

2. METHODS 

 

In reviewing the basic theory of the 

methods to be used, the following is an 

explanation of the related theories that will be 

addressed in the development of several transfer 

learning models and the analysis of their 

performance. 

 

2.1.  Deep Learning 

Deep learning is a branch of artificial 

intelligence (AI) that leverages deep neural 

networks to model and understand complex 

data. This technology enables systems to 

autonomously learn from large and intricate 

datasets by hierarchically extracting high-level 

features. Deep learning is renowned for its 

ability to handle challenging tasks such as 

image and voice recognition, natural language 

processing, and solving problems that require 

deep contextual understanding. Deep neural 

networks allow for more abstract data 

representation, facilitating machines to learn 

and adapt with increasing levels of intelligence. 

[9] 

 

2.2.  CNN 

Convolutional Neural Networks (CNN) 

are widely used in deep learning for tasks such 

as image classification, segmentation, object 

detection, video processing, natural language 

processing, and voice recognition. CNNs 

typically include convolutional layers, pooling 

layers, fully connected layers, and non-linear 

layers. They use kernel filters to extract 

fundamental features from input images and 

popular activation functions such as Sigmoid, 

Tanh, ReLU, Leaky ReLU, Noisy ReLU, and 

Parametric Linear Units. This architecture, 

influenced by the visual cortex, mimics the 

neural connections of the human brain. 

Examples include LeNet, AlexNet, and 

VGGNet. [10] 
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2.3.  Transfer Learning 

Transfer Learning (TL) aims to enhance 

the understanding of the current task by linking 

it to related source domain tasks. TL improves 

learning by associating previous tasks with the 

target task, providing faster and better solutions. 

TL facilitates efficient learning and 

communication between the source tasks and 

the target task. However, it can lead to negative 

transfer if the testing and training samples are 

incorrectly transferred, thus reducing the 

performance of the target task. [11] 

 

2.4.  Inception V3 

Inception V3 is a deep learning technique 

for classification. Its advantage lies in the 

complexity of its network structure, which 

includes input, output, and classification stages. 

The process involves extraction and various 

hidden layers such as convolution, pooling, 

activation (ReLU), softmax, and fully 

connected layers. With its structured approach, 

Inception V3 efficiently organizes object 

information by using convolutional outputs for 

the next convolutional step. [12] 

 

 

 

Figure 1. Arsitektur inceptionV3 

 

2.5.  DenseNet121 

DenseNet121 is a unique Convolutional 

Neural Network (CNN) architecture with dense 

inter-layer connections. Unlike traditional 

CNNs, each layer in DenseNet121 is connected 

not only to its neighboring layers but also to 

every preceding layer. This dense connectivity 

improves information flow throughout the 

network, promotes richer feature 

representations, and efficiently reduces the risk 

of overfitting by utilizing outputs from previous 

layers as inputs.[13] 

 

 
Figure 2. Arsitektur DenseNet121  

2.6.  VGG16 

VGG16 is a Deep Convolutional Neural 

Network (DCNN) model proposed by 

Simonyan and Zisserman. The model achieved 

a top-5 test accuracy of 92.7% on the ImageNet 

dataset and won the Large-Scale Visual 

Recognition Challenge (ILSVRC) held by the 

Oxford Visual Geometry Group. The increased 

depth in the VGG model helps the kernels learn 

more complex features. In research on the 

effectiveness of transfer learning, the pre-

trained and fine-tuned VGG16 achieves 

significantly higher accuracy compared to 

networks trained from scratch.[14] 

Figure 3. Arsitektur VGG16  

 

2.7.  Evaluation Method 

2.7.1.  Binary Cross Entropy 

Binary cross entropy is a loss function 

used in binary classification [15]. The 

calculation of binary cross entropy can be done 

using the following formula: 

𝑳 =  −
𝟏

𝒎 × 𝒏
[∑ ∑ (𝒚𝒊𝒋𝒍𝒐𝒈(𝒑𝒊𝒋) + (𝟏 − 𝒚𝒊𝒋)𝐥𝐨𝐠 (𝟏 − 𝒑𝒊𝒋))

𝒏

𝒋=𝟏

𝒎

𝒊=𝟏

] 

(1) 
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2.7.2.  Confusion Matrix 

The confusion matrix is a widely used tool 

in machine learning to assess the performance of 

a classifier on a dataset where the true labels are 

known. This tool helps clarify basic performance 

metrics in binary classification, including true 

positives, false positives, true negatives, and 

false negatives, which are often used as the basis 

for other evaluation metrics. Recently, with the 

growing interest in explaining and visualizing 

artificial intelligence, the confusion matrix has 

also been used as a fundamental explanatory 

component and a core visual element in many 

Explainable AI (XAI) toolkits and tutorials [16]. 
 

2.8.  Data Preprocessing and Data 

Augmentation 

2.8.1.  Resize and Rescale 

Resizing images in transfer learning 

ensures a consistent input size for the model, 

improving computational efficiency by 

adjusting the image resolution to fit device 

constraints such as memory limits [17]. 

Rescaling involves normalizing pixel scales to 

accelerate model convergence, reduce 

numerical issues, and enhance learning 

stability, as well as adapting the model to the 

diverse characteristics of the data [18]. 

 

2.8.2.  Split Ratio 

The choice of dataset split ratio in 

machine learning is crucial for optimizing 

model performance and evaluation. The 

proportion allocated to training and testing 

subsets directly affects the model's ability to 

generalize. A low training proportion can 

prevent the model from understanding complex 

data patterns, potentially leading to overfitting, 

where the model fits too closely to the training 

data but fails to generalize to new data. 

Conversely, a high training proportion can 

make the model less flexible and prone to 

underfitting, where the model fails to capture 

significant variations in the data.[19]. 

 

2.8.3.  Rotation and Flip 

Rotation and flipping are common 

preprocessing techniques in machine learning 

for image datasets, especially in computer 

vision tasks. Rotation diversifies the dataset by 

rotating images at angles such as 90 degrees, 

180 degrees, or more complex angles, helping 

the model handle object orientation variations, 

prevent overfitting, and improve recognition 

from different viewpoints [20]. Meanwhile, 

horizontal or vertical flipping creates additional 

variations in the dataset by mirroring images, 

enhancing the model's generalization across 

various orientations in the test data. Balancing 

the use of rotation and flipping is crucial to 

preserving the original meaning of the images 

and avoiding significant information loss 

during preprocessing. [21]. 

 

2.8.4.  Tools 

OpenCV (Open Source Computer 

Vision) is an essential open-source library for 

image processing and computer vision 

applications. Released in 1999, the library 

supports basic image operations such as 

reading, writing, color conversion, cropping, 

and resizing. OpenCV also includes a range of 

computer vision algorithms, including face and 

object detection, tracking, feature matching, 

and segmentation, enabling the development of 

advanced machine vision systems [22]. 

Keras provides a tool called 

ImageDataGenerator that performs real-time 

augmentation of tensor image datasets. This 

function continuously generates batches of data 

[23]. 

 

2.9.  Fine Tuning 

Fine-tuning in the context of deep 

learning involves adjusting a pre-trained neural 

network model for a more specific task. First, a 

model pre-trained on a large dataset such as 

ImageNet is selected. Then, the model is 

adapted for the specific task by modifying the 

last layers and adding new layers to fit the 

desired output. During fine-tuning, some layers, 

especially the early ones that capture general 

features, may be kept unchanged (frozen), while 

the new layers are retrained for the specific task. 

[24]. 

 

2.10.  Method of Collecting Data 

2.10.1.  Literature Review 

The collection of literature review data is 

a systematic approach to gathering information 

from various relevant sources such as academic 

databases and digital libraries. This process 

involves identifying research questions, 

searching for scholarly articles and books, 

evaluating their relevance and quality, and 

analyzing them to understand relevant concepts, 

theories, and methodologies [25]. 
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2.10.2.  Field Study 

Field studies use observational data 

collection, which involves systematic and direct 

observation of objects, behaviors, or 

phenomena in their natural context. Researchers 

observe events directly without significant 

interference, using methods such as participant 

or non-participant observation. This approach 

collects data on behavior, social interactions, 

and contextual situations, providing in-depth 

insights into human behavior, group dynamics, 

or environmental characteristics in qualitative 

research [26]. 

 

2.11.  Development Method CRISP-DM 

The CRISP-DM (Cross-Industry 

Standard Process for Data Mining) framework 

is utilized in this study to guide the systematic 

approach to analyzing the performance of 

Transfer Learning models in detecting AI-

generated and real images. This framework is 

composed of several phases, including Business 

Understanding, Data Understanding, Data 

Preparation, Modeling, Evaluation, and 

Deployment. The selected Transfer Learning 

models InceptionV3, VGG16, and 

DenseNet121 are integrated into the Data 

Preparation, Modeling, and Evaluation phases 

of this framework, each contributing uniquely 

to the overall process. 

Data Preparation: In the Data Preparation 

phase, the dataset is preprocessed to ensure 

compatibility with the chosen models. Each 

model requires specific image input sizes and 

data normalization procedures. InceptionV3, 

for example, requires images to be resized to 

299x299 pixels, while VGG16 and 

DenseNet121 work with 224x224 pixels. The 

preprocessing steps also include data 

augmentation techniques, such as rotation, 

flipping, and scaling, which are applied to 

enhance the robustness of the models. 

Modeling: During the Modeling phase, 

the three Transfer Learning models are fine-

tuned to adapt to the specific characteristics of 

the AI-generated and real images in the dataset. 

Fine-tuning involves adjusting the pre-trained 

weights of the models on the new dataset, 

freezing some layers to retain the general 

features learned from the original training on 

large datasets like ImageNet, while retraining 

the final layers to improve specificity in 

distinguishing AI-generated images. The choice 

of optimizer, learning rate, and number of 

epochs are carefully selected for each model to 

maximize performance. 

Evaluation: The Evaluation phase 

focuses on assessing the models' performance 

using metrics confusion matrix and binary 

cross-entropy loss.  A confusion matrix is 

generated to visualize the performance of each 

model in correctly identifying AI-generated and 

real images. InceptionV3, with its efficient 

architecture, shows strengths in scenarios with 

complex image patterns, while VGG16 and 

DenseNet121 offer deeper feature extraction 

capabilities that are beneficial in cases where 

subtle differences between AI-generated and 

real images need to be detected [27]. 

 
Figure 4. Phase of CRISP-DM method 

 

3. RESULTS AND DISCUSSION 

 

3.1.  Research Plan 

3.1.1.  Business Understanding 

The goal is to compare the performance 

of three transfer learning (TL) algorithms 

InceptionV3, VGG16, and DenseNet121 due to 

the lack of existing research in this area, in order 

to identify the optimal performance in detecting 

AI-generated images compared to real images. 

 

3.1.2.  Data Understanding 

a. Dataset Search 

1. The researchers began their search for 

datasets on Kaggle, a well-known 

platform offering a wide variety of 

datasets and research projects for data 

scientists and machine learning 

enthusiasts. 

2. After registering and logging into 

Kaggle, the researchers utilized the 

search feature by entering keywords such 

as "AI Image and Real," "AI Image 
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Generated," and "AI vs Real Image" to 

identify relevant datasets. 

3. Kaggle displayed a list of search results 

matching the entered keywords, allowing 

the researchers to review and assess 

potential datasets that fit their research 

needs. 

4. The researchers evaluated the identified 

datasets based on criteria such as image 

consistency, the number of images, class 

distribution, and image clarity, ensuring 

that the dataset met the requirements for 

training with transfer learning methods. 

5. After selecting a suitable dataset, the 

researchers proceeded to download it 

from Kaggle for further processing and 

analysis in their research efforts. 

 

b. Data Visualization 

Visualization plays a key role in 

understanding the distribution and 

characteristics of the dataset. In this phase, 

various visualizations are generated to provide 

insights into the dataset composition and the 

impact of preprocessing steps: 

1. Class Distribution Visualization: Bar 

charts are used to visualize the 

distribution of AI-generated and real 

images across training, validation, and 

test sets. This helps ensure that the 

dataset is balanced and that the models 

are exposed to a diverse range of images 

during training. 

2. Class Distribution Visualization: Bar 

charts are used to visualize the 

distribution of AI-generated and real 

images across training, validation, and 

test sets. This helps ensure that the 

dataset is balanced and that the models 

are exposed to a diverse range of images 

during training. 

Here are the steps to create a bar chart 

visualization of the dataset split ratio: 

1. Import the necessary modules: `os` for 

system operations, `pandas` for data 

manipulation, `seaborn` and 

`matplotlib.pyplot` for visualization. Use 

the code `import os`, `import pandas as 

pd`, `import seaborn as sns`, and `import 

matplotlib.pyplot as plt. 

2. Define the directory where the data is 

located using `directory = 

"/content/data/train_split"`. 

3. Count the number of images for each 

class (real and AI) in each part of the 

dataset (train, test, and validation) using 

list comprehensions and the `len()` 

function. Example code: `train_real = 

len([os.path.join(directory+'/train/real', 

filename) for filename in 

os.listdir(directory+'/train/real')])`. 

4. Create a DataFrame from the previously 

counted data. This DataFrame contains 

information about the number of images 

for each class in each part of the dataset. 

5. "Melt" the DataFrame for visualization. 

Melting changes the DataFrame structure 

from wide format to long format, which 

is more suitable for visualization. 

Example code: `melted_df = 

df.melt(id_vars=['Dataset'], 

value_vars=['real', 'ai'], 

var_name='Class', 

value_name='Count')`. 

6. Finally, create a plot using seaborn to 

display the dataset distribution for each 

part (train, test, and validation). This plot 

shows the number of images on the y-

axis and the dataset type (real or AI) on 

the x-axis, with dataset parts (train, test, 

or validation) represented by color. Use 

the code `sns.barplot(data=melted_df, 

x='Dataset', y='Count', hue='Class')`. 

Here are the steps to create a 

visualization of training, testing, and validation 

sample sets with an output of 10 images: 

1. First, code randomly selects 5 samples 

from the "real" and "AI" classes in the 

training dataset using `random.sample`. 

2. Next, these samples are plotted using the 

`plot_samples` function. 

3. Then, the plot title is set to 

"Training/Test/Validation Set Samples" 

with a font size of 30. 

4. These three steps are repeated three times 

for samples from the training, testing, and 

validation sets. 

 

3.1.3.  Data Preparation 

a. Data Preprocessing 

1. Split Ratio 

a) The code first collects all image 

files from the 'AI' and 'real' 

directories within the train 

directory. 

b) Using `train_test_split` from 

scikit-learn, the dataset for each 
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class (AI and real) is divided into 

training, testing, and validation 

sets. The proportions are set using 

`random_state` to ensure 

consistency in the splits each time 

the code is run. 

c) Next, the code creates a new 

directory structure to store the 

divided dataset: train, test, and 

validation. 

d) Each of these directories contains 

subdirectories 'AI' and 'real' 

representing the dataset classes. 

e) Image files from the training, 

testing, and validation sets for each 

class are moved to their respective 

directories based on the previous 

split using `shutil.copy`. 

f) After this process, there are three 

new directories containing images 

divided into training, testing, and 

validation sets. This directory 

structure is ready to be used as 

input for the model. 

2. Rescaling: This is done using the 

parameter `rescale = 1/255.`, which 

adjusts pixel values to be between 0 and 

1. 

3. Resizing: This is done using the 

parameter `target_size = (224, 224)`, 

which resizes the images to dimensions 

of 224x224 pixels. 

 

b. Data Augmentation 

To enhance the robustness of the models, 

data augmentation techniques such as rotation, 

flipping, zooming, and shifting are applied. 

These techniques artificially increase the size of 

the training dataset and help the models 

generalize better to unseen data. Here is a 

further explanation: 

1. Horizontal Flip: Applied using 

`horizontal_flip = True` to perform 

horizontal flipping of the images. 

2. Vertical Flip: Applied using 

`vertical_flip = True` to perform vertical 

flipping of the images. 

3. Rotation Range: Rotates images within a 

range of 0.3 degrees using 

`rotation_range = 0.3`. 

4. Width Shift Range: Shifts images 

horizontally by 0.25 of the image width 

using `width_shift_range = 0.25`. 

5. Height Shift Range: Shifts images 

vertically by 0.25 of the image height 

using `height_shift_range = 0.25`. 

6. Channel Shift Range: Shifts color 

channels within a range of 0.35 using 

`channel_shift_range = 0.35`. 

7. Shear Range: Applies shear 

transformation to images within a range 

of 0.2 using `shear_range = 0.2`. 

8. Zoom Range: Applies zoom to images 

within a range of 0.4 using `zoom_range 

= 0.4`. 

9. ZCA Whitening: Uses `zca_whitening = 

True` to reduce pixel correlation in 

images. 

 

3.1.4.  Modelling 

Next is the modeling phase. For this 

study, the researchers chose to use three transfer 

learning models: InceptionV3, VGG16, and 

DenseNet121. Additionally, there are 3 

optimizers (Adam, SGD, and RMSprop), 3 

dataset split ratios (60:40, 70:30, and 80:20), 

and 2 epoch types (20 and 50). The base layers 

of each model are frozen to retain the general 

features learned from ImageNet, while the top 

layers are re-trained on the new dataset. This 

allows the models to adapt to the specific 

nuances of AI-generated and real images. 

Different optimizers (Adam, SGD, RMSprop) 

and lratio dataset are tested to find the optimal 

training configuration for each model. The 

number of epochs is varied to determine the 

point at which each model achieves the best 

balance between accuracy and overfitting. Here 

is a further explanation: 

a. Import the `Sequential` class from the 

`models` module in Keras. `Sequential` 

is a Keras model that allows for adding 

layers sequentially. 

b. Import the `Flatten` and `Dense` classes 

from the `layers` module in Keras. 

`Flatten` is used to flatten the output from 

the previous layer into a single 

dimension, while `Dense` is used to add 

fully connected layers. 

c. Import the chosen transfer learning 

models from the `applications` module in 

Keras. 

d. Import the `ImageDataGenerator` class 

from the `preprocessing.image` module 

in Keras. `ImageDataGenerator` is used 

for data augmentation on images during 

model training. 
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e. Create each of the chosen transfer 

learning models using pre-trained 

weights from the ImageNet dataset 

(`weights='imagenet'`), without the top 

layer (`include_top=False`). Then 

specify the expected input shape for each 

model. 

f. Add a `Flatten` layer to flatten the output 

from each transfer learning model into a 

single dimension. Add several `Dense` 

layers with ReLU activation, followed by 

a final `Dense` layer with a single neuron 

and sigmoid activation. These layers can 

be trained, while the previous transfer 

learning layers are frozen. 

 

3.1.5.  Evaluation 

The "evaluation" phase in the CRISP-

DM methodology is a crucial step in 

comparative research on the performance of 

InceptionV3, VGG16, and DenseNet121 

models in detecting AI-generated images versus 

real images. During training, models are 

evaluated using metrics such as confusion 

matrix and binary cross-entropy loss. These 

metrics are tracked across different 

configurations to identify the best-performing 

model under various conditions. Here is an 

explanation of the binary cross-entropy loss 

function: 

a. Using `evaluate_generator` to assess the 

model with test data (`test_set`). This 

means the model will be evaluated using 

data that was not used during the training 

or validation processes. 

b. Printing the evaluation results as 

percentages. `model.metrics_names` is 

an attribute that contains a list of metric 

names used in the model. 

`model.metrics_names[0]` refers to the 

name of the first metric, which in this 

context is the loss, and 

`model.metrics_names[1]` refers to the 

name of the second metric, which is 

accuracy. 

c. The model is re-evaluated using the 

`evaluate` method, this time with 

`test_set`. The evaluation results, namely 

loss and accuracy, are stored in the 

variables `test_loss` and `test_accuracy`. 

Finally, these results are printed as 

percentages to illustrate the model's 

performance on the test data. 

 

Here is an explanation of the confusion matrix: 

a. The text "-----CONFUSION MATRIX--

---" is printed to mark the visualization of 

the confusion matrix. 

b. Predictions are made on the test data 

(`test_data`) using the trained model, and 

the results are stored in the `predictions` 

variable.   

c. The confusion matrix (`conf_m`) is 

computed using the `confusion_matrix` 

function from sklearn with `test_labels` 

(the true labels of the test data) and 

`np.round(predictions)` (the labels 

predicted by the model).   

d. Accuracy (`acc`) is calculated using the 

`accuracy_score` function from sklearn 

with `test_labels` and 

`np.round(predictions)`, then multiplied 

by 100 to convert it to a percentage. 

e. The number of true negatives (tn), false 

positives (fp), false negatives (fn), and 

true positives (tp) is extracted from the 

confusion matrix using the `ravel()` 

method. 

f. The confusion matrix is visualized by 

calling the `plot_confusion_matrix` 

function with arguments 

`conf_mat=conf_m` (the confusion 

matrix), ̀ figsize=(6, 6)` (image size), and 

`cmap=matplotlib.pyplot.cm.Reds` 

(color map for visualization).   

g. After visualization, the text "-----

CLASSIFICATION REPORT-----" is 

printed to mark the presentation of the 

classification report.   

h. Precision (`precision`) is calculated using 

the formula (tp / (tp + fp) * 100), where 

TP is true positive and FP is false 

positive. 

i. Recall (`recall`) is calculated using the 

formula (tp / (tp + fn) * 100), where FN 

is false negative. 

j. Accuracy, precision, recall, and F1-score 

are printed as percentages along with 

their respective values. The F1-score is 

calculated using the harmonic mean 

formula (2 * precision * recall / 

(precision + recall)). 
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3.2.  Results and Discussion 

3.2.1.  Research Results 

a. Dataset search results 

Based on the data obtained from the 

Kaggle website, the dataset was downloaded 

and extracted from the ZIP file into PNG files. 

The dataset contains a total of 975 images, with 

539 images generated by AI and 436 real 

images. This dataset was obtained from Kaggle 

and created by Bekhzod Olimov. 

 

b. Data visualization results  

There are two data visualizations: the 

first is the visualization for the dataset split ratio 

using a bar chart, and the second is the 

visualization for random sample images. 

Figure 5. One of data visualization split ratio dataset 

Figure 6. One of data visualization random samples image 

 

c. Data preparation results 

Figure 7. One of ImageDataGenerator Output 

 Figure 7 shows the results of the 

ImageDataGenerator process. The training set 

contains 776 images across 2 classes, while the 

validation and test sets have 340 and 152 

images, respectively. "CPU times" and "Wall 

time" measure execution duration and real-time 

duration. Data augmentation is consistently 

applied across all experiments. 

d. Evaluation results 

1. Split ratio (60:40) and Optimizer (Adam) 

 

Tabel 1.  Result split ratio (60:40) and optimizer (adam) 

Model 

Classification Report Traini

ngTim

e 

(minut

e) 

Confusion Matrix 

Accuracy 
Precisio

n 
Recall 

F1- 

Score 

Binary 

Cross 

Entro

py 

TP TN FP FN 

Inceptio

nV3-

20 

75.09% 69.86% 
77.86

% 

73.65

% 

56.22

% 
43 

11

8 
102 44 29 

VGG16-

20 
81.23% 77.14% 

82.44

% 

79.70

% 

48.71

% 
144 

13

0 
108 32 23 

DenseN

et121

-20 

78.16% 71.90% 
83.97

% 

77.46

% 

59.63

% 
43 

11

9 
110 43 21 

Inceptio

nV3-

50 

75.09% 72.31% 
71.76

% 

72.03

% 

54.92

% 
99 

12

6 
94 36 37 

VGG16-

50 
76.79% 74.42% 

73.28

% 

73.85

% 

46.70

% 
172 

12

9 
96 33 35 

DenseN

et121

-50 

78.50% 80.36% 
68.70

% 

74.07

% 

45.48

% 
63 

14

0 
90 22 41 

2. Split ratio (60:40) and Optimizer (SGD) 

Tabel 2.  Result split ratio (60:40) and optimizer (SGD) 

Model 

Classification Report Traini

ngTim

e 

(minut

e) 

Confusion Matrix 

Accuracy 
Precisio

n 
Recall 

F1- 

Score 

Binary 

Cross 

Entro

py 

TP TN FP FN 

Inceptio

nV3-

20 

74.06% 71.32% 
70.23

% 

70.77

% 

51.23

% 
45 

12

5 
92 37 39 

VGG16-

20 
73.72% 85.53% 

49.62

% 

62.80

% 

53.96

% 
151 

15

1 
65 11 66 

DenseN

et121

-20 

75.77% 81.91% 
58.78

% 

68.44

% 

49.96

% 
42 

14

5 
77 17 54 

Inceptio

nV3-

50 

75.77% 71.43% 
76.34

% 

73.80

% 

50.67

% 
69 

12

2 
100 40 31 

VGG16-

50 
77.13% 69.05% 

88.55

% 

77.59

% 

49.14

% 
374 

11

0 
116 52 15 

DenseN

et121

-50 

79.18% 75.74% 
78.63

% 

77.15

% 

44.24

% 
77 

12

9 
103 33 28 

3. Split ratio (60:40) and Optimizer 

(RMSprop) 

Tabel 3. Result split ratio (60:40) and optimizer (RMSprop) 

Model 

Classification Report Traini

ngTim

e 

(minut

e) 

Confusion Matrix 

Accuracy 
Precisio

n 
Recall 

F1- 

Score 

Binary 

Cross 

Entro

py 

TP TN FP FN 

Inceptio

nV3-

20 

77.82% 77.50% 
70.99

% 

74.11

% 

50.93

% 
44 

13

5 
93 27 38 

VGG16-

20 
75.09% 75.00% 

66.41

% 

70.45

% 

47.25

% 
144 

13

3 
87 29 44 

DenseN

et121

-20 

72.01% 73.79% 
58.02

% 

64.96

% 

61.07

% 
45 

13

5 
76 27 55 

Inceptio

nV3-

50 

75.09% 75% 
66.41

% 

70.45

% 

50.24

% 
86 

13

3 
87 29 44 

VGG16-

50 
78.50% 76.15% 

75.57

% 

75.86

% 

60.63

% 
296 

13

1 
99 31 32 

DenseN

et121

-50 

74.40% 71.54% 
70.99

% 

71.26

% 

52.48

% 
77 

12

5 
93 37 38 
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4. Split ratio (70:30) and Optimizer (Adam) 

Tabel 4.  Result split ratio (70:30) and optimizer (adam) 

Model 

Classification Report Traini

ngTim

e 

(minut

e) 

Confusion 

Matrix 

Accuracy 
Precisio

n 
Recall 

F1- 

Score 

Binary 

Cross 

Entro

py 

TP 
T

N 
FP FN 

Inceptio

nV3-

20 

81.65% 76.26% 
80.92

% 

78.52

% 

41.68

% 
43 

15

2 

10

6 
33 25 

VGG16-

20 
75.32% 81.93% 

51.91

% 

63.55

% 

49.94

% 
158 

17

0 
68 15 63 

DenseN

et121

-20 

77.22% 67.88% 
85.50

% 

75.67

% 

58.26

% 
49 

13

2 

11

2 
53 19 

Inceptio

nV3-

50 

75.32% 81.93% 
51.91

% 

63.55

% 

57.99

% 
48 

17

0 
68 15 63 

VGG16-

50 
76.19% 81.98% 

69.47

% 

75.20

% 

49.85

% 
216 

10

1 
91 20 40 

DenseN

et121

-50 

80.70% 78.23% 
74.05

% 

76.08

% 

40.85

% 
78 

15

8 
97 27 34 

 

5. Split ratio (70:30) and Optimizer (SGD) 

Tabel 5.  Result split ratio (70:30) and optimizer (SGD) 

Model 

Classification Report Traini

ngTim

e 

(minut

e) 

Confusion 

Matrix 

Accuracy 
Precisio

n 
Recall 

F1- 

Score 

Binary 

Cross 

Entro

py 

TP 
T

N 
FP FN 

Inceptio

nV3-

20 

73.42% 63.91% 
82.44

% 

72.00

% 

49.73

% 
44 

12

4 

10

8 
61 23 

VGG16-

20 
74.21% 68.97% 

91.60

% 

78.69

% 

56.31

% 
165 67 

12

0 
54 11 

DenseN

et121

-20 

78.16% 84.44% 
58.02

% 

68.78

% 

50.55

% 
49 

17

1 
76 14 55 

Inceptio

nV3-

50 

79.43% 79.46% 
67.94

% 

73.25

% 

44.26

% 
45 

16

2 
89 23 42 

VGG16-

50 
75.79% 78.69% 

73.28

% 

75.89

% 

50.96

% 
410 95 96 26 35 

DenseN

et121

-50 

79.37% 89.11% 
68.70

% 

77.59

% 

50.88

% 
133 

11

0 
90 11 41 

 

6. Split ratio (70:30) and Optimizer 

(RMSprop) 

Tabel 6.  Result split ratio (70:30) and optimizer (RMSprop) 

Model 

Classification Report Traini

ngTim

e 

(minut

e) 

Confusion 

Matrix 

Accuracy 
Precisio

n 
Recall 

F1- 

Score 

Binary 

Cross 

Entro

py 

TP 
T

N 
FP FN 

Inceptio

nV3-

20 

78.72% 70.27% 
87.84

% 

78.08

% 

46.05 

% 
57 

14

0 

13

0 
55 18 

VGG16-

20 
78.97% 81.45% 

77.10

% 

79.22

% 

47.59

% 
160 98 

10

1 
23 30 

DenseN

et121

-20 

78.80% 80.19% 
64.89

% 

71.73

% 

47.01

% 
51 

16

4 
85 21 46 

Inceptio

nV3-

50 

75.63% 90.91% 
45.80

% 

60.91

% 

52.53

% 
62 

17

9 
60 6 71 

Table 6 continued… 

Model 

Classification Report 

Traini

ngTim

e 

(minut

e) 

Confusion Matrix 

Accuracy 
Precisio

n 
Recal 

F1- 

Score 

Binary 

Cro

ss 

Ent

rop

y 

TP TN FP FN 

VGG16-

50 
74.21% 84.38% 

61.83

% 

71.37

% 

53.02

% 
199 

10

6 
81 15 50 

DenseN

et121

-50 

78.97% 87.50% 
69.47

% 

77.45

% 

54.56

% 
68 

10

8 
91 13 40 

 

7. Split ratio (80:20) and Optimizer (Adam) 

Tabel 7.  Result split ratio (80:20) and optimizer (adam) 

Model 

Classification Report Traini

ngTim

e 

(minut

e) 

Confusion Matrix 

Accuracy 
Precisio

n 
Recall 

F1- 

Score 

Binary 

Cross 

Entro

py 

TP TN FP FN 

Inceptio

nV3-

20 

84.26% 81.33% 
82.43

% 

81.88

% 

39.54

% 
62 

16

7 
122 28 26 

VGG16-

20 
72.79% 82.50% 

50.00

% 

62.26

% 

51.90

% 
161 74 33 7 33 

DenseN

et121

-20 

73.47% 86.49% 
48.48

% 

62.14

% 

61.80

% 
58 76 32 5 34 

Inceptio

nV3-

50 

79.88% 89.11% 
60.81

% 

72.29

% 

43.61

% 
142 

18

4 
90 11 58 

VGG16-

50 
81.79% 84.67% 

78.38

% 

81.40

% 

42.36

% 
319 

12

2 
116 21 32 

DenseN

et121

-50 

80.27% 75.34% 
83.33

% 

79.14

% 

42.22

% 
93 63 55 18 11 

 

8. Split ratio (80:20) and Optimizer (SGD) 

Tabel 8.  Result split ratio (80:20) and optimizer (SGD) 

Model 

Classification Report Traini

ngTim

e 

(minut

e) 

Confusion Matrix 

Accuracy 
Precisio

n 
Recall 

F1- 

Score 

Binary 

Cross 

Entro

py 

TP TN FP FN 

Inceptio

nV3-

20 

83.38% 84.73% 
75.00

% 

79.57

% 

38.70

% 
57 

17

5 
111 20 37 

VGG16-

20 
61.22% 73.68% 

21.21

% 

32.94

% 

60.95

% 
160 76 14 5 52 

DenseN

et121

-20 

75.51% 89.47% 
51.52

% 

65.38

% 

53.99

% 
56 77 34 4 32 

Inceptio

nV3-

50 

82.31% 83.33% 
75.76

% 

79.36

% 

38.68

% 
62 71 50 10 16 

VGG16-

50 
76.87% 71.05% 

81.82

% 

76.06

% 

47.59

% 
471 59 54 22 12 

DenseN

et121

-50 

74.83% 70.42% 
75.76

% 

72.99

% 

48.86

% 
75 60 50 21 16 
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9. Split ratio (80:20) and Optimizer 

(RMSprop) 

Tabel 9. Result split ratio (80:20) and optimizer (RMSprop) 

Model 

Classification Report Traini

ngTim

e 

(minut

e) 

Confusion 

Matrix 

Accuracy 
Precisio

n 
Recall 

F1- 

Score 

Binary 

Cross 

Entro

py 

TP 
T

N 
FP FN 

Inceptio

nV3-

20 

78.72% 89.47% 
57.43

% 

69.96

% 

45.59

% 
61 

18

5 
85 10 63 

VGG16-

20 
77.55% 80.00% 

66.67

% 

72.73

% 

55.59

% 
113 70 44 11 22 

DenseN

et121

-20 

80.95% 83.93% 
71.21

% 

77.05

% 

44.05

% 
58 72 47 9 19 

Inceptio

nV3-

50 

81.63% 79.10% 
80.30

% 

79.70

% 

40.70

% 
95 67 53 14 13 

VGG16-

50 
75.51% 71.43% 

75.76

% 

73.53

% 

48.86

% 
210 61 50 20 16 

DenseN

et121

-50 

78.23% 75.00% 
77.27

% 

76.12

% 

43.63

% 
70 64 51 17 15 

 

3.2.2.  The Influence of Aspects on Best 

Performance Results 

Tabel 10. The influence of aspects on best performance results 

Pengaruh Aspek-Aspek Pada Hasil Performa Terbaik 

TL / 

Parameter 
Nama Akurasi Keterangan 

TL InceptionV3 81.65% 

TL: InceptionV3, Split ratio: 

70:30, Optimizer: Adam, 
Epoch: 20 

Split Ratio 70:30 81.65% 
TL: InceptionV3, 

Optimizer: Adam, Epoch: 20 

Optimizer Adam 81.65% 
TL: InceptionV3, Split ratio: 

70:30, Epoch: 20 

Epoch 50 81.63% 
TL: InceptionV3, Split ratio: 
70:30, Optimizer: RMSprop 

 

a. Transfer Learning 

Based on performance analysis using 

various evaluation metrics, the transfer learning 

model that consistently achieved the highest 

accuracy percentage is InceptionV3.  

InceptionV3: 

1. Using the Adam optimizer, this model 

achieved an accuracy of 81.65% with a 

70:30 split ratio and 20 epochs. 

2. With the RMSprop optimizer, the 

accuracy reached 81.63% with the same 

70:30 split ratio but with 50 epochs. 

3. Using the SGD optimizer, this model 

achieved an accuracy of 79.43% with a 

70:30 split ratio and 50 epochs. 

InceptionV3 consistently showed high 

accuracy across various optimizers and with the 

70:30 data split setting. This indicates the 

model's reliability and effectiveness in handling 

different dataset partitions and achieving high 

classification performance. 

b. Split Ratio Dataset 

Based on performance analysis using 

various evaluation metrics, the 70:30 split ratio 

often results in the best performance in terms of 

accuracy percentage. The experiments that 

showed promising results are as follows: 

DenseNet121: 

1. With the Adam optimizer, accuracy 

reached 79.18% at 50 epochs. 

2. With the SGD optimizer, accuracy 

reached 79.37% at 50 epochs. 

3. With the RMSprop optimizer, the model 

showed stability with an accuracy of 

78.97% at 50 epochs. 

InceptionV3: 

1. With the Adam optimizer, accuracy 

reached 81.65% at 20 epochs. 

2. With the SGD optimizer, accuracy 

reached 79.43% at 50 epochs. 

3. With the RMSprop optimizer, accuracy 

reached 81.63% at 50 epochs. 

c. Optimizer 

Based on the analysis using model 

evaluation methods, the Adam optimizer often 

yields the best performance in terms of accuracy 

percentage. 

1. DenseNet121 with Adam Optimizer, at a 

70:30 split ratio and 50 epochs, achieved 

an accuracy of 79.18%. 

2. InceptionV3 with Adam Optimizer, at a 

70:30 split ratio and 20 epochs, achieved 

an accuracy of 81.65%. 

Optimizer Adam generally provides 

good performance due to its efficiency in 

handling gradients and accelerating model 

convergence. This effectiveness is 

demonstrated in image classification tasks 

using DenseNet121 and InceptionV3. 

d. Epoch 

Based on the performance analysis of the 

models using various evaluation metrics, the 

best accuracy results for the DenseNet121 and 

InceptionV3 models tend to occur at epoch 50 

in the experiments conducted. 

1. DenseNet121, with a 70:30 split ratio and 

50 epochs, achieved an accuracy of 

79.37% with the SGD optimizer. 

2. InceptionV3, with a 70:30 split ratio and 

50 epochs, achieved an accuracy of 

81.63% with the RMSprop optimizer. 
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Although there were higher accuracy 

results at epoch 20 for DenseNet121 (79.37% 

with SGD optimizer) and InceptionV3 (81.65% 

with Adam optimizer), the choice of epoch 50 

as the optimal point is based on the better 

consistency of performance across various 

experiments. Higher results at epoch 20 in 

specific cases indicate that the model may have 

reached an optimal convergence point with the 

validation data at that stage. However, overall, 

epoch 50 provides a good balance between 

sufficient learning time and the model’s ability 

to achieve optimal generalization. 

 

3.2.3.  Comparasion of Results with Previous 

Research 

In the study conducted by Bekhzod 

Olimov using the same dataset he created, titled 

"AI-Generated Vs Real Images Classifier," 

several elements are compared with previous 

research using the same dataset: 

a. Previous research used only one transfer 

learning model, ResNet150, while this 

study compares three models: 

InceptionV3, VGG16, and DenseNet121. 

b. The dataset split ratio in previous 

research was 90:5:5, whereas this study 

experiments with split ratios of 60:40, 

70:30, and 80:20. 

c. Previous research used only one 

optimizer, Adam, while this study 

employs three optimizers: Adam, SGD, 

and RMSprop, although Adam is used in 

both studies. 

d. Previous research used 8 epochs, whereas 

this study experiments with 20 and 50 

epochs. 

e. The highest accuracy achieved in 

previous research was 98.9%, while in 

this study, the highest accuracy achieved 

is 84.26% with InceptionV3 using Adam 

optimizer, 80:20 split ratio, and 20 

epochs. 

f. The lowest loss in previous research was 

27%, whereas the lowest loss in this 

study for the InceptionV3 model is 

38.68% with the RMSprop optimizer, 

80:20 split ratio, and 50 epochs. 

 

CONCLUSION 

 

Configuration of split ratio, optimizer, 

and epoch significantly affects model 

performance. Here are the best and worst 

parameter compositions based on average 

accuracy and training time for each model 

experiment: 

a. The parameter composition that achieved 

the best accuracy performance at 20 

epochs is the RMSprop optimizer with an 

80-20 dataset split ratio, reaching an 

average accuracy of 79.70%. 

b. The parameter composition that resulted 

in the fastest training time at 20 epochs is 

the Adam optimizer with a 60-40 dataset 

split ratio, reaching an average training 

time of 76.66 minutes. 

c. The parameter composition that achieved 

the best accuracy performance at 50 

epochs is the Adam optimizer with an 80-

20 dataset split ratio, reaching an average 

accuracy of 80.65%. 

d. The parameter composition that resulted 

in the fastest training time at 50 epochs is 

the RMSprop optimizer with a 70-30 

dataset split ratio, reaching an average 

training time of 109.66 minutes. 

Based on the performance evaluation 

results discussed in the previous chapter, here 

are the best evaluation results for each model 

based on the evaluation methods applied: 

a. Based on binary cross-entropy loss, the 

lowest loss for InceptionV3 is 38.68% 

using an 80-20 split ratio, RMSprop 

optimizer, and 50 epochs. For VGG16, 

the lowest loss is 46.70% using a 60-40 

split ratio, Adam optimizer, and 50 

epochs. For DenseNet121, the lowest 

loss is 38.68% using a 70-30 split ratio, 

Adam optimizer, and 50 epochs. 

b. Based on the confusion matrix for 

InceptionV3, the highest accuracy 

achieved is 84.26%, with a precision of 

81.33%, recall of 82.43%, F1-Score of 

81.88, 167 True Positives (TP), 122 True 

Negatives (TN), 28 False Positives (FP), 

and 26 False Negatives (FN) using the 

Adam optimizer, an 80-20 split ratio, and 

20 epochs. 

c. Based on the confusion matrix for 

VGG16, the highest accuracy achieved is 

81.79%, with a precision of 84.67%, 

recall of 78.38%, F1-Score of 81.40, 122 

True Positives (TP), 116 True Negatives 

(TN), 21 False Positives (FP), and 32 

False Negatives (FN) using the Adam 

optimizer, an 80-20 split ratio, and 50 

epochs. 
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d. Based on the confusion matrix for 

DenseNet121, the highest accuracy 

achieved is 80.95%, with a precision of 

83.93%, recall of 71.21%, F1-Score of 

77.05, 72 True Positives (TP), 47 True 

Negatives (TN), 9 False Positives (FP), 

and 19 False Negatives (FN) using the 

Adam optimizer, an 80-20 split ratio, and 

20 epochs. 

In this study, the researcher 

acknowledges several limitations and 

shortcomings. Based on the findings, the 

following recommendations are proposed to 

enhance future research: (1) Expanding from 

the current binary classification to multi-class 

classification could advance the study. (2) 

Utilizing diverse datasets with varying 

characteristics is crucial to assess the 

consistency of results across different 

conditions and to improve model 

generalization. (3) Further fine-tuning of the 

model by adding new layers, such as 

convolutional or dense layers, may enhance 

performance. (4) Experimenting with different 

parameters like learning rate, batch size, 

optimizer, and number of epochs, and 

considering hyperparameter tuning or grid 

search, could help identify the optimal 

combination for better model performance. 
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