In Silico Assessment of Chemical Constituents of Zingiber officinale Rosc. For Anti-diabetic Activity: Molecular Docking with α-Glucosidase Receptor

Normi Normi, Supandi Supandi, Ismiarni Komala

Abstract


Diabetes Mellitus (DM) is a disease in which blood sugar (glucose) levels are elevated because the body cannot release or utilize insulin adequately. Rhizome of Zingiber officinale Rosc. (ginger) has been reported to possess anti-diabetic properties. This study aimed to provide information on the chemical components of ginger that have potential in silico antidiabetic activity against the α-glucosidase receptor. Twenty chemical components of ginger (quercetin, catechin, humulene, β-sesquiphellandrene, camphene, farnesene, β-sitosterol, stigmasterol, curcumin, 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, 6-paradol, 8-paradol, 10-paradol, methyl-6-gingerol, and methyl-8-gingerol) were used as ligands. An in silico study was conducted using the molecular docking technique with the AutoDock Vina software, which was then displayed using PyMOL and Biovia Discovery Studio. The grid box settings obtained in this study were as follows: center_x = -20.209, center_y = -6.763, center_z = 9.393, size_x = 12, size_y = 10, size_z = 12, and spacing (angstrom) = 1. The results indicated that the native ligand acarbose exhibited a binding energy of -6.9 kcal/mol. In contrast, four test ligands, quercetin (-7.3 kcal/mol), catechin (-7.1 kcal/mol), curcumin (-7.0 kcal/mol), and 6-gingerol (-7.0 kcal/mol) - demonstrated lower binding energies than acarbose, suggesting more stable conformations and more potent pharmacological effects. Lipinski analysis revealed that these four test ligands met all five Lipinski rule criteria. The study calculated the Root Mean Square Deviation (RMSD) value for the Docking of acarbose with the α-glucosidase macromolecule, resulting in a value of 0.384 Å. Interaction analysis conducted using Biovia Discovery Studio software revealed various interaction types, including hydrogen bonding, hydrophobic, electrostatic, and unfavorable interactions. In conclusion, this study provides valuable insights into potential therapeutic compounds derived from ginger and offers a foundation for further research and development in pharmaceutical and medicinal chemistry.


References


Adelina, R. (2020). Simulasi Docking Molekuler Senyawa Potensial Tanaman Justicia Gendarussa Burm.f. Sebagai Antidiabetes. Buletin Penelitian Kesehatan, 48(2), pp. 117–122. Available at: https://doi.org/10.22435/bpk.v48i2.3139.

Akhani, S.P., Vishwakarma, S.L. and Goyal, R.K. (2004). Antidiabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. Journal of Pharmacy and Pharmacology, 56(1), pp. 101–105. Available at: https://doi.org/10.1211/0022357022403.

Al-Amin, Z.M. et al. (2006). Anti-diabetic and hypolipidaemic properties of ginger ( Zingiber officinale) in streptozotocin-induced diabetic rats. British Journal of Nutrition, 96(04), pp. 660–666. Available at: https://doi.org/10.1079/bjn20061849.

Arundita, S. et al. (2020). In vitro alpha glucosidase activity of uncaria gambir roxb. And syzygium polyanthum (wight) walp. From West Sumatra, Indonesia. Open Access Macedonian Journal of Medical Sciences, 8(A), pp. 810–817. Available at: https://doi.org/10.3889/oamjms.2020.4298.

Banday, M.Z., Sameer, A.S. and Nissar, S. (2020). Pathophysiology of diabetes: An overview. Avicenna Journal of Medicine, 10(04), pp. 174–188. Available at: https://doi.org/10.4103/ajm.ajm_53_20.

Chaudhury, A. et al. (2017). Clinical Review of Anti-diabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Frontiers in Endocrinology, 8(January). Available at: https://doi.org/10.3389/fendo.2017.00006.

Dwitiyanti, D. et al. (2018). Potensi Biji Buah Nangka (Artocarpus heterophyllus L.) Dalam Menghambat Reseptor Alfa-Glukosidase Pada Tikus Diabetes Mellitus Gestasional Yang Terinduksi Streptozotosin Secara In Vivo Dan In Silico. Prosiding Kolokium Doktor dan Seminar Hasil Penelitian Hibah, 1(1), pp. 118–130. Available at: https://doi.org/10.22236/psd/11118-13065.

Govindarajan, V.S. and Connell, D.W. (1983). Ginger - chemistry, technology, and quality evaluation: Part 1. C R C Critical Reviews in Food Science and Nutrition, 17(1), pp. 1–96. Available at: https://doi.org/10.1080/10408398209527343.

Gupta, R. et al. (2016). Pharmacological Activities of Zingiber Officinale (Ginger) and Its Active Ingredients: A review. International Journal of Scientific and Innovative Research, 4(1), pp. 1–18.

Hanif, A.U., Lukis, P.A. and Fadlan, A. (2020). Pengaruh Minimisasi Energi MMFF94 dengan MarvinSketch dan Open Babel PyRx pada Penambatan Molekular Turunan Oksindola Tersubstitusi. Alchemy : Journal of Chemistry, 8(2), pp. 33–40. Available at: https://doi.org/10.18860/al.v8i2.10481.

Hossain, U. et al. (2020). An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food and Chemical Toxicology. Available at: https://doi.org/10.1016/j.fct.2020.111738.

International Diabetes Federation (2021). IDF Diabetes Atlas. Available at: https://doi.org/10.1016/j.diabres.2013.10.013.

Kumar Poudel, D. et al. (2022). Quality Assessment of Zingiber officinale Roscoe Essential Oil from Nepal. Natural Product Communications, 17(3). Available at: https://doi.org/10.1177/1934578X221080322.

Kurnyawaty, N., Suwito, H. and Kusumattaqiin, F. (2021). Studi in Silico Potensi Aktivitas Farmakologi Senyawa Golongan Dihidrotetrazolopirimidin. Jurnal Kimia, 15(2), p. 172. Available at: https://doi.org/10.24843/jchem.2021.v15.i02.p07.

Lekshmi, P.C. et al. (2014). In vitro anti-diabetic and inhibitory potential of turmeric (Curcuma longa L) rhizome against cellular and LDL oxidation and angiotensin converting enzyme. Journal of Food Science and Technology, 51(12), pp. 3910–3917. Available at: https://doi.org/10.1007/s13197-013-0953-7.

Li, Y. et al. (2012). Gingerols of zingiber officinale enhance glucose uptake by increasing cell surface GLUT4 in cultured L6 myotubes. Planta Medica, 78(14), pp. 1549–1555. Available at: https://doi.org/10.1055/s-0032-1315041.

Limanto, A. et al. (2019). Antioxidant, α-Glucosidase Inhibitory Activity and Molecular Docking Study of Gallic Acid, Quercetin and Rutin: A Comparative Study. Molecular and Cellular Biomedical Sciences, 3(2), p. 67. Available at: https://doi.org/10.21705/mcbs.v3i2.60.

Lipinski, C.A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), pp. 337–341. Available at: https://doi.org/10.1016/j.ddtec.2004.11.007.

Mohammed, A. et al. (2017). Inhibition of key enzymes linked to type 2 diabetes by compounds isolated from Aframomum melegueta fruit. Pharmaceutical Biology, 55(1), pp. 1010–1016. Available at: https://doi.org/10.1080/13880209.2017.1286358.

Munda, S. et al. (2018). Chemical Analysis and Therapeutic Uses of Ginger (Zingiber officinale Rosc.) Essential Oil: A Review. Journal of Essential Oil-Bearing Plants, 21(4), pp. 994–1002. Available at: https://doi.org/10.1080/0972060X.2018.1524794.

Rachmania, A.R., Supandi and Anggun Larasati, O. (2015). Analisis In Silico Senyawa Diterpenoid Lakton Herba Sambiloto (Andrographis paniculata Nees) Pada Reseptor Alpha-Glucosidase Sebagai Antidiabetes Tipe II. Pharmacy, 12(02), pp. 210–222.

Rena, S.R., Nurhidayah, N. and Rustan, R. (2022). Analisis Molecular Docking Senyawa Garcinia Mangostana L Sebagai Kandidat Anti SARS-CoV-2. Jurnal Fisika Unand, 11(1), pp. 82–88. Available at: https://doi.org/10.25077/jfu.11.1.82-88.2022.

Saddique, F.A. et al. (2021). Alpha-Glucosidase Inhibition and Molecular Docking Studies of 4-Hydroxy- N' - [ Benzylidene / 1-Phenylethylidene ] -. Chiang Mai J.Sci., 48(2), pp. 460–469.

Sattar, N.A. et al. (2012). Determination of in vitro anti-diabetic effects of Zingiber officinale Roscoe. Brazilian Journal of Pharmaceutical Sciences, 48(4), pp. 601–607. Available at: https://doi.org/10.1590/S1984-82502012000400003.

Sumilat, A., Pangkey, H. and Luntungan, H.A. (2021). Penambatan Molekul Glutation Fauna Laut terhadap Reseptor dari Beberapa Penyakit Virus. Jurnal Pesisir dan Laut Tropis, 9, pp. 53–58.

Syafitri, D.M. et al. (2018). A Review: Is Ginger (Zingiber officinale var. Roscoe) Potential for Future Phytomedicine?. Indonesian Journal of Applied Sciences, 8(1). Available at: https://doi.org/10.24198/ijas.v8i1.16466.

Zhang, M. et al. (2021). Ginger (Zingiber officinale Rosc.) And Its Bioactive Components Are Potential Resources For Health Beneficial Agents. Phytotherapy Research, 35(2), pp. 711–742. Available at: https://doi.org/10.1002/ptr.6858.

Zhu, Y. et al. (2015). Bioactive Ginger Constituents Alleviate Protein Glycation by Trapping Methylglyoxal. Chemical Research in Toxicology, 28(9), pp. 1842–1849. Available at: https://doi.org/10.1021/acs.chemrestox.5b00293.


Full Text: PDF

DOI: 10.15408/pbsj.v5i2.36161

Refbacks

  • There are currently no refbacks.