EXPRESSION OF PROTEIN CD73/CD90/CD105/CD34/CD45/CD11b/CD19/HLA-DR ON STEM CELLS FROM HUMAN FAT TISSUE, USING CYTOMETRY FLOW

Imam Rosadi, Karina Karina, Iis Rosliana, Siti Sobariah, Irsyah Afini, Tias Widyastuti, Anggraini Barlian

Abstract


Abstrak

Sel punca merupakan sel yang dapat membelah dan berdiferensiasi menjadi sel jenis lainnya. Sel punca asal jaringan lemak potensial dikembangkan sebagai salah satu alternatif sel punca yang bersumber dari limbah sedot lemak manusia. Sel punca asal jaringan lemak akan mengekspresikan protein spesifik penanda permukaan CD73, CD90, CD105 dalam persentase yang tinggi dan CD34/CD45/CD11b/CD19/HLA-DR dalam persentase yang rendah. Studi ini bertujuan untuk memanfaatkan limbah sedot lemak manusia dengan melakukan isolasi sel punca asal jaringan lemak dan menguji protein penanda permukaan spesifik sel punca. Beberapa tahapan dalam studi ini adalah isolasi stromal vascular fraction (SVF) dan kultur sel punca asal jaringan lemak manusia, population doubling time (PDT) serta analisis protein penanda permukaan CD7Ee3, CD90, CD105, dan CD34/CD45/CD11b/CD19/HLA-DR pada pasase ke-1 dari 3 donor. Hasil dari studi ini menunjukkan bahwa sel dari jaringan lemak berhasil dikultur dengan durasi pembelahan sel adalah 3,3 hari. Sel mengekspresikan CD73 (99,79%), CD90 (94,17%), CD105 (48,75%), dan CD34/CD45/CD11b/CD19/HLA-DR (kurang dari 2%). Ekspresi CD105 yang rendah dari ketiga donor diduga berkaitan dengan tingkatan pasase sel yang digunakan. Berdasarkan hasil tersebut dapat disimpulkan bahwa sel punca asal jaringan lemak pasase ke-1 telah mengekspresikan ketiga marker protein penanda permukaan sel punca, yaitu CD73, CD90 dan CD105.

Abstract

Stem cells are cells that can divide into other different types of similar cells. Stem cells from fat tissue potential have been developed as an alternative stem cell from human liposuction. Stem cells from fat tissue will express high protein-specific markers on CD73, CD90, CD105 and CD34/CD45/CD11b/CD19/HLA-DR in a low percentage. This study aims to utilize human liposuction waste by isolating stem cells from fat tissue and testing protein-specific stem cell surface markers. Some stages in this study are isolation of stromal vascular fraction (SVF) and stem cell culture from human fat tissue, population doubling time (PDT) and protein analysis of surface markers CD73, CD90, CD105, and CD34/CD45/CD11b/CD19/HLA-DR on the 1st passage of 3 donors. The results of this study showed that cells from fat tissue were successfully cultured with cell division duration of 3.3 days. Cells expressed CD73 (99.79%), CD90 (94.17%), CD105 (48.75%), and CD34/CD45/CD11b/CD19/HLA-DR (less than 2%). The low expression of CD105 from all three donors is thought to be related to the level of cell passage used. Based on these results, it can be concluded that the stem cells from first passage fat tissue have expressed the three protein markers of stem cell surface markers, namely CD73, CD90 and CD105.


Keywords


CD73; CD90; CD105; Jaringan lemak; Protein permukaan; sel punca; Fat tissue; Stem cell; surface protein

Full Text:

PDF

References


Atashi, F., Jaconi, M. E., Pittet-Cuenod, B., & Modarressi, A. (2014). Autologous platelet-rich plasma: a biological supplement to enhance adipose-derived mesenchymal stem cell expansion. Tissue Engineering Part C Methods, 21(3), 253-262.

Atashi, F., Serre-Beinier, V., Nayernia, Z., Pittet-Cuénod, B., & Modarressi, A. (2015). Platelet rich plasma promotes proliferation of adipose derived mesenchymal stem cells via activation of AKT and Smad2 signaling pathways. Journal Stem Cell Research Therapy, 5(08), 301.

Barberini, D. J., Freitas, N. P., Magnoni, M. S., Maia, L., Listoni, A. J., Heckler, M. C., Amorim, R. M. (2014). Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential. Stem Cell Research & Therapy, 5(1), 25.

Bora, P., & Majumdar, A. S. (2017). Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem cell research & therapy, 8(1), 145.

De Schauwer, C., Piepers, S., Van de Walle, G. R., Demeyere, K., Hoogewijs, M. K., Govaere, J. L., Meyer, E. (2012). In search for cross-reactivity to immunophenotype equine mesenchymal stromal cells by multicolor flow cytometry. Cytometry part A, 81(4), 312-323.

Dominici, M. L. B. K., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317.

Dykstra, J. A., Facile, T., Patrick, R. J., Francis, K. R., Milanovich, S., Weimer, J. M., & Kota, D. J. (2017). Concise review: fat and furious: harnessing the full potential of adipose-derived stromal vascular fraction. Stem Cells Translational Medicine, 6(4), 1096-1108.

Gentile, P. (2012). Concise review: adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery. Stem Cells Translational Medicine, 1(3), 230-236.

Kang, Y. J., Jeon, E. S., & Song, H. Y. (2005). Role of c-Jun N-terminal kinase in the PDGF-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells. Journal of Cellular Biochemistry, 95(6), 1135-1145.

Kern, S., Eichler, H., Stoeve, J., Klüter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem cells, 24(5), 1294-1301.

Kisselbach, L., Merges, M., Bossie, A., & Boyd, A. (2009). CD90 expression on human primary cells and elimination of contaminating fibroblasts from cell cultures. Cytotechnology, 59(1), 31-44.

Mark, P., Kleinsorge, M., Gaebel, R., Lux, C. A., Toelk, A., Pittermann, E., Ma, N. (2013). Human mesenchymal stem cells display reduced expression of CD105 after culture in serum-free medium. Stem Cells International, 2013(2013), 1-8.

Mennan, C., Wright, K., Bhattacharjee, A., Balain, B., Richardson, J., & Roberts, S. (2013). Isolation and characterisation of mesenchymal stem cells from different regions of the human umbilical cord. BioMed Research International, 2013(2013), 1-8.

Mitchell, J. B., McIntosh, K., Zvonic, S., Garrett, S., Floyd, Z. E., Kloster, A., ... Wu, X. (2006). Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem cells, 24(2), 376-85.

Nguyen, A., Guo, J., Banyard, D. A., Fadavi, D., Toranto, J. D., Wirth, G. A., ... Widgerow, A. D. (2016). Stromal vascular fraction: a regenerative reality? part 1: current concepts and review of the literature. Journal of Plastic, Reconstructive & Aesthetic Surgery, 69(2), 170-179.

Nicoletti, G. F., De Francesco, F., D'Andrea, F., & Ferraro, G. A. (2015). Methods and procedures in adipose stem cells: state of the art and perspective for translation medicine. Journal of cellular physiology, 230(3), 489-495.

Palumbo, S., Tsai, T. L., & Li, W. J. (2014). Macrophage migration inhibitory factor regulates AKT signaling in hypoxic culture to modulate senescence of human mesenchymal stem cells. Stem Cells & Development, 23(8), 852-865.

Pawitan, J. A. (2009). Prospect of adipose tissue derived mesenchymal stem cells in regenerative medicine. Cell Tissue Transplant Therapy, 2009(2), 7-9.

Pierelli, L., Bonanno, G., Rutella, S., Marone, M., Scambia, G., & Leone, G. (2001). CD105 (endoglin) expression on hematopoietic stem/progenitor cells. Leukemia & Lymphoma, 42(6), 1195-1206.

Remelia, M., Rosadi, I., Sobariah, S., Rosliana, I., & Karina. (2016, November 14-16). Method for isolation of regenerative stromal vascular fraction from human subcutaneous adipose tissue: Trans-disciplinary approach to primary prevention of the diseases. Paper presented at the First Annual International Conference and Exhibition on Indonesian Medical Education and Research Institute, Jakarta, Indonesia.

Robertson, J. A. (2010). Embryo stem cell research: ten years of controversy. The Journal of Law, Medicine & Ethics, 38(2),191-203.

Varma, M. J., Breuls, R. G., Schouten, T. E., Jurgens, W. J., Bontkes, H. J., Schuurhuis, G. J., ... Milligen, F. J. (2007). Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells and Development, 16(1), 91-104.

Wang, Y., Kim, H. J., Vunjak-Novakovic, G., & Kaplan, D. L. (2006). Stem cell-based tissue engineering with silk biomaterials. Biomaterials, 27(36), 6064-6082.

Xie, L., Zhang, N., Marsano, A., Vunjak-Novakovic, G., Zhang, Y., & Lopez, M. J. (2013). In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold. Stem Cell Reviews and Reports, 9(6), 858-72.

Zhang, B. (2010). CD73: a novel target for cancer immunotherapy. Cancer research, 70(16), 6407-6411.

Zhang, Y., Meng, Q., Zhang, Y., Chen, X., & Wang, Y. (2017). Adipose-derived mesenchymal stem cells suppress of acute rejection in small bowel transplantation. Saudi Journal of Gastroenterology: Official Journal of the Saudi Gastroenterology Association, 23(6), 323.

Zhu, Y., Liu, T., Song, K., Fan, X., Ma, X., & Cui, Z. (2008). Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochemistry and Function, 26(6), 664-75.

Zuk, P. A. (2010). The adipose-derived stem cell: looking back and looking ahead. Molecular Biology of the Cell, 21(11), 1783-1787.




DOI: https://doi.org/10.15408/kauniyah.v12i2.8751 Abstract - 0 PDF - 0

Refbacks



This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120