ISOLASI DAN KERAGAMAN BAKTERI UREOLITIK LOKAL RIAU YANG BERPOTENSI SEBAGAI CAMPURAN BETON

Mufidah Dwi Suci Ningsih, Tetty Marta Linda, Bernadeta Leni Fibriarti

Abstract


Abstrak

Bakteri ureolitik merupakan mikroorganisme yang memiliki kemampuan untuk menghasilkan urease yang dapat mengendapkan kalsium karbonat (kalsit). Bakteri ini berpotensi sebagai agen bioremediasi logam berat dan sebagai bahan konstruksi beton. Penelitian ini bertujuan untuk mengisolasi, mengkarakterisasi, dan menguji presipitasi kalsit bakteri ureolitik dari tanah lokal Riau. Hasil penelitian memperoleh 30 isolat bakteri yang berhasil diisolasi dari tanah tempat pembuangan akhir, dan setelah dilakukan pewarnaan Gram, 77% isolat merupakan bakteri Gram positif dan hanya 33% merupakan bakteri Gram negatif.  Hasil uji presipitasi menunjukkan bahwa isolat- isolat dengan kode sp. 32, sp. 9, dan sp. 20 mampu membentuk kalsium karbonat berturut-turut sebesar 0,129 g, 0,126 g, dan 0,105 g, setelah diinkubasi selama 7 hari pada medium cair yang diberi penambahan urea dan kalsium. Isolat-isolat bakteri tersebut memiliki hubungan kekerabatan yang dekat, yang ditandai dengan besarnya koefisien kekerabatannya, yaitu lebih dari 70%. Dengan demikian, bakteri-bakteri yang terisolasi dan teruji dalam  membentuk kalsium karbonat asal tanah lokal Riau berasal dari sekelompok bakteri, yang berpotensi untuk dikembangkan sebagai campuran beton.

 

Abstract

Ureolytic bacteria are microorganisms that have the ability to produce urease that precipitates calcium carbonate (calcite). This bacteria has potential as an agent for bioremediation of heavy metal and as a concrete construction material. The aim of this research is concerning about isolation, characterization, and examination on calcite precipitate of the ureolytic bacteria from Riau local soil. The result showed that 30 isolates were isolated from landfill soil, and after Gram staining, 77% of the isolates are Gram-positive and only 33% are Gram-negative. The result of precipitation examination showed that the bacterial isolates sp. 32, sp. 9, and sp. 20 precipitated 0.129 g, 0.126 g and 0.105 g of calcium carbonate, respectively, after incubation for 7 days in broth medium added with urea and calcium. The bacterial isolates have a close relationship, which is characterized by the magnitude of the coefficient of more than 70%. Therefore, the isolated and tested bacteria having the ability to form calcium carbonate from local soil Riau derived from a group of bacteria, which has a potential to be developed as a mixture of concrete.

Permalink/DOI: http://dx.doi.org/10.15408/kauniyah.v11i1. 5737


 


Keywords


Bakteri ureolitik; Kalsium karbonat; Tanah; Urease; Calcium carbonate; Soil; Ureolytic bacteria; Urease

Full Text:

PDF

References


Achal, V., Mukherjee, A., Basu, P. C., & Reddy, M. S. (2009). Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite produc-tion. Journal of Industrial Microbiology & Biotechnology, 36(7), 981-988.

Alhour, M. T. (2013). Isolation, characterization and application of calcite producing bacteria from urea rich soils (Master’s thesis). Science in Biotechnology, Islamic University of Gaza.

Bharathi, N. (2012). Calcium carbonate precipitation with growth profile of isolated ureolytic strains. International Journal of Science and Research, 3(9), 2045-2049.

Chahal, N., Rajor, A., & Siddique, R. (2011). Calcium carbonate precipitation by different bacterial strains. African Journal of Biotechnology, 10(42), 8359-8372.

De Muynck, W., Belie, D. N., & Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: a review. Ecological Engineering, 36(2), 118-136.

Ghosh, P., & Mandal, S. (2006). Development of bioconcrete material using an enrichment culture of novel thermophilic anaerobic bacteria. Indian Journal of Experimental Biology, 44(4), 336-339.

Hadioetomo, R. S. (1993). Mikrobiologi dasar dalam praktek. teknik dan prosedur dasar laboratorium. Jakarta: PT Gramedia.

Hammad, I. A., Talkhan, F. N.,& Zoheir, A. E. (2013). Urease activity and introduction of calcium carbonate precipitation by Sporosarcina pasteurii NCIMB 8841. Journal of Applied Sciences Research, 9(3), 1525-1533.

Hammes, F., & Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology,1(1), 3-7.

Kang, C. H., Oh, S. J., Han, S. H., & Nam, I. H. (2015). Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea. Ecological Engineering, 74, 402-407.

Krishnapriya, S., Babu, D. L. V., & Arulraj, G. P. (2015). Isolation and identification of bacteria to improve the strenght of concrete. Microbiological Research, 174, 48-55.

Prescott, H. (2002). Laboratory exercise in microbiology. The McGraw-Hill Companies.

Saraswati, R., Husen, E., & Simanungkalit, R. D. M. (2007). Metode analisis biologi tanah. Bogor: Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian.

Van Tittelboom, K., De Belie, N., De Muynck, W., & Verstraete, W. (2010). Use of bacteria to repair cracks in concrete. Cement and Concrete Research, 40(1), 157–66.




DOI: https://doi.org/10.15408/kauniyah.v11i1.5737 Abstract - 0 PDF - 0

Refbacks

  • There are currently no refbacks.


This work is licensed under a CC-BY- SA.

Indexed By:

/public/site/images/rachma/logo_moraref_75 /public/site/images/rachma/logo_google_scholar_75_01 /public/site/images/rachma/logo_isjd_120 /public/site/images/rachma/logo_garuda_75 /public/site/images/rachma/logo_crossref_120/public/site/images/rachma/logo_base_2_120 /public/site/images/rachma/neliti-blue_75   /public/site/images/rachma/dimensions-logo_120