MORFOLOGI PERMUKAAN DAUN TANAMAN TERUNG (Solanum melongena L.) SEBAGAI RESPONS TERHADAP CEKAMAN KEKERINGAN
Abstract
Abstrak
Terung (Solanum melongena L.) tergolong tanaman yang sensitif terhadap kekeringan selama tahap pertumbuhan dan perkembangannya. Karakteristik stomata dan trikoma merupakan kriteria yang dapat digunakan untuk mengidentifikasi tanaman yang toleran terhadap kekeringan. Penelitian bertujuan menguji respons karakteristik anatomi daun berupa trikoma dan stomata tanaman terung terhadap cekaman kekeringan melalui empat taraf interval penyiraman. Penelitian menggunakan Rancangan Acak Lengkap melalui empat taraf interval penyiraman, yakni 3, 6, 9, dan 12 hari. Pengaruh cekaman kekeringan terhadap morfologi permukaan daun pada terung menyebabkan terjadinya peningkatan kerapatan trikoma tiga kali lebih banyak dibandingkan dengan kontrol, penurunan ukuran lebar trikoma mencapai 59,02%, penurunan ukuran lebar stomata mencapai 78,34%, dan penurunan ukuran lebar porus stomata mencapai 80,80%. Hasil penelitian menunjukkan bahwa peningkatan jumlah trikoma dengan ukuran trikoma yang semakin kecil diduga sebagai bentuk proteksi tanaman terhadap kerusakan jaringan dan mekanisme adaptasi tanaman untuk dapat memenuhi jumlah asimilasi CO2 perluas daun yang dibutuhkan untuk fotosintesis pada kondisi kekeringan. Sensitifitas tanaman terhadap kondisi kekeringan berupa mekanisme adaptasi dengan cara memperkecil ukuran stomata dan bukaan lebar porus, sehingga laju fotosintesis tetap terjaga pada kondisi kekeringandan mekanisme tanaman menjaga efisiensi penggunaan air dengan cara mengurangi ukuran stomata dan memperkecil bukaan porus stomata.
Abstract
Eggplant (Solanum melongena L.) belongs to a group of plants that are sensitive to drought (water stress) during their growth and development stages. Characteristics of stomata and trichomes are criteria that can be used to identify drought-tolerant plants. This study aims to determine the response of leaf anatomical characteristics of the eggplant as well as trichome and stomata to drought stress through four levels of watering interval. The research using completely randomized design with watering intervals of 3, 6, 9, and 12 days. The effect of drought stress on leaf surface morphology of the eggplant resulted in three times greater trichomes density than control, decreased trichomes width by 59.02%, stomata width by 73.84%, and size of stomata porch width by 80.80%.. The result was showing that increasing number of trichome with smaller trichome size was thought to be a form of crop protection against tissue damage and plant adaptation mechanism in order to meet the amount of CO2 leaf expansion assimilation required for photosynthesis in drought stress condition. The sensitivity of plants to drought stress conditions is the mechanism of adaptation by reducing the size of stomata and wide porous opening, so that the rate of photosynthesis has been maintaining in the dry conditions and the mechanism of the plant maintain the efficiency of water use by reducing the size of stomata and minimizing stomata porous opening.
Permalink/DOI: http://dx.doi.org/10.15408/kauniyah.v11i1. 5667
Keywords
Full Text:
UntitledReferences
Armita D. E. A, Laras R & Mastuti. (2017). Tolerance level of three genotypes of Cayenne Pepper (Capsicum frutescens L.) toward drought stress of vegetative phase based on morphological and physiological responses. International Journal of ChemTech Research, 10(2),183-192.
Arzani, K., Ghasemi, M., Yadollahi, A., & Hokmabadi, H. (2013). Study of foliar epidermal anatomy of four Pistachio Rootstocks under water stress. Idesia (Chile), 31(1), 102-107.
Belhadj, S., Derridj, A., Aigouy, T., Gers, C., Gauquelin, T., & Mevy, J. P. (2007). Comparative morphology of leaf epidermis in eight populations of Atlas pistachio (Pistacia atlantica Desf., Anacardiaceae). Microscopy Research and Technique, 70(10), 837-846.
Biswas, A. K. (2008). Integrated water resources management: is it working?. Water Resources Development, (24), 19.
Bosu, P. P., & Wagner, M. R. (2007). Effects of induced water stress on leaf trichome density and foliar nutrients of three elm (Ulmus) Species: implications for resistance to the elm feaf beetle. Environmental Entomology, 36(3), 595-601.
Brewer, C. A. (1992). Responses by stomata on leaves to microenvironmental condi-tions. In C. A. Goldman (Ed.), Tested studies for laboratory teaching. Proceedings of the 13th Workshop/Con-ference of the Association for Biology Laboratory Education (ABLE).
Du, T., Kang, S., Zhang, J., & Davies, W. J. (2015). Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. Journal of Experimental Botany, 66(8), 2253-2269.
Efendi, R., & Azrai, M. (2010). Identifikasi karakter toleransi cekaman kekeringan berdasarkan respons pertumbuhan dan hasil genotipe jagung. Widyariset, 13(3), 41-50.
Embiale, A., Hussein, M., Husen, A., Sahile, S., & Mohammed, K. (2016). Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. Journal of Agronomy, 15,45-57.
Ennajeh, M., Vadel, A. M., Cochard, H., & Khemira, H. (2010). Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. Journal of Horticultural Science & Biotechnology, 85(4), 289-294.
Fahn, A. (1995). Anatomi Tumbuhan. Edisi ketiga. Yogyakarta: UGM Press.
Fu, Q., Yang, S. R. C., Wang, H. S., Zhao, B., Zhou, C. L, Ren, S. X., & Guo, Y. D. (2013). Leaf morphological and ultrastructural performance of eggplant (Solanum melongena L.) in response to water stress. International Journal for Photosynthesis Research, 51(1),109-114.
Haryanti, S. (2010). Jumlah dan distribusi stomata pada daun beberapa spesies tanaman dikotil dan monokotil. Buletin Anatomi dan Fisiologi, 18(2), 21-28.
Hetherington, A. M., & Woodward, F. I. (2003). The role of stomata in sensing and driving environmental change. Nature, 424(6951), 901.
Huttunen, P., Kärkkäinen, K., Løe, G., & Ågren, J. (2010). Leaf trichome production and responses to defoliation and drought in Arabidopsis lyrata (Brassicaceae). Annales Botanici Fennici, 47,199-207.
JICA [Japan International Cooperation Agency]. (2010). Handbook on climate change adaptation in the water sector a resilient approach that integrates water management and community development. [Disaster management and development: working to improve society’s disaster management capacity]
Kim, T., Bohmer, H. M, Hu, H. H., Nishimura N., & Schroeder, J. I. (2010). Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology, 61, 561-591.
Khaerana, M., Ghulamahdi, & Purwakusumah E. D. (2008). Pengaruh cekaman kekeringan dan umur panen terhadap pertumbuhan dan kandungan xanthor-rhizal temulawak (Curcuma xanthorrhiza roxb.). Bulgarian Agronomy, 36, 241-247.
Khosroshahi, M. Z. M., Esna-Ashari, Ershad A., & Imani, A. (2014). Morphological changes in response to drought stress in cultivated and wild almond species. International Journal of Horticultural Science and Technology, 1(1), 79-92.
Lakitan, B. (2004). Dasar-Dasar Fisiologi Tumbuhan. Jakarta: PT. Raja Grafindo Persada.
Lestari, E. G. (2005). Hubungan antara kerapatan stomata dengan ketahanan kekeringan pada somaklon padi gajahmungkur, towuti, dan IR 64. Biodiversitas, 7(1), 44-48.
Munir, M., Khan, M. A., Ahmed, M., Bano, A., Ahmed, S. N., Tariq, K., Tabassum S. T., Mukhtar, M., Ambreen, & Bashir, S. (2011). Foliar epidermal anatomy of some ethnobotanically important species of wild edible fruits of Northern Pakistan. Journal of Medicinal Plants Research, 5(24), 5873-5880.
Nugraheni, W. (2010). Variasi pertumbuhan, kandungan prolin, dan aktivitas nitrat reduktase tanaman ganyong (Canna edulis Ker.) pada ketersediaan air yang berbeda. [Skripsi]. Jurusan Biologi Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Sebelas Maret, Surakarta.
Pessarakli, M. (2002). Handbook of plant and crop physiology (2sd ed. revised and expanded). New York: Marcell Dekker.
Prabawardani, S., Sarungallo, A., Mustamu, Y., & Luhulima, F. (2008). Tanggap klon lokal ubi jalar Papua terhadap cekaman kekeringan. Penelitian Pertanian Tanaman Pangan, 27(2), 113-119.
Sopandie, D. (2014). Fisiologi adaptasi tanaman terhadap cekaman abiotik pada agroekosistem Tropika, Bogor: IPB Press.
Sutrian, Y. (2011). Pengantar anatomi tumbuh-tumbuhan: tentang sel dan jaringan (Edisi Revisi). Jakarta: Rineka Cipta.
Tanaka, Y., Sano, T. M., Tamaoki, Nakajima, N., Kondo, N., & Hasezana, S. (2005). Ethylene inhibits abscisic acid-induced stomatal closure in arabidopsis. Plant Physiology, 138, 2337-2343.
Wehner, G., Balko, C., & Ordon, F. (2016). Experimental design to determine drought stress response and early leaf senescence in Barley (Hordeum vulgare L.). Bio-Protocol, 6(5), 1-16.
Wilmer, C. (1983). Stomata. Department of Biology University of Stirling, UK: Longman Group Limited.
Xu, Z., & Zhou, G. (2008). Responses of leaf stomata density to water status and its relationship with photosynthesis in A Grass. Journal of Experimental Botany, 59(12), 3317-3325.
Yang, Y. M., Tang, R., Sulpice, & Ban, Y. (2014). Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. Journal Plant growth Regulation. 33(3), 612-625.
Zhou, R. X., Yu, C., Ottosen, E., Rosenqvist L., Zhao, Y., Wang, W., Yu, T., Zhao., & Wu, Z. (2017). Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biology, 17(24), 2-13.
DOI: https://doi.org/10.15408/kauniyah.v11i1.5662 Abstract - 0 Untitled - 0
Refbacks
- There are currently no refbacks.
This work is licensed under a CC-BY- SA.
Indexed By:
  Â